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Preface

Metaheuristics have been shown to be effective for difficult combinatorial op-
timization problems appearing in various industrial, economical, and scientific
domains. Prominent examples of metaheuristics are evolutionary algorithms,
tabu search, simulated annealing, scatter search, memetic algorithms, variable
neighborhood search, iterated local search, greedy randomized adaptive search
procedures, ant colony optimization and estimation of distribution algorithms.
Problems solved successfully include scheduling, timetabling, network design,
transportation and distribution, vehicle routing, the travelling salesman prob-
lem, packing and cutting, satisfiability and general mixed integer programming.

EvoCOP began in 2001 and has been held annually since then. It was the first
event specifically dedicated to the application of evolutionary computation and
related methods to combinatorial optimization problems. Originally held as a
workshop, EvoCOP became a conference in 2004. The events gave researchers an
excellent opportunity to present their latest research and to discuss current de-
velopments and applications. Following the general trend of hybrid metaheuris-
tics and diminishing boundaries between the different classes of metaheuristics,
EvoCOP has broadened its scope over the last years and invited submissions on
any kind of metaheuristic for combinatorial optimization.

This volume contains the proceedings of EvoCOP 2008, the 8th European
Conference on Evolutionary Computation in Combinatorial Optimization. It
was held in Naples, Italy, on 26–28 March 2008, jointly with EuroGP 2008,
the Eleventh European Conference on Genetic Programming, EvoBIO 2008, the
Sixth European Conference on Evolutionary Computation and Machine Learn-
ing in Bioinformatics, and EvoWorkshops 2008, which consisted of the following
nine individual workshops: EvoCOMNET, the Fifth European Workshop on the
Application of Nature-Inspired Techniques to Telecommunication Networks and
other Connected Systems; EvoFIN, the Second European Workshop on Evolu-
tionary Computation in Finance and Economics; EvoHOT, the Fourth Euro-
pean Workshop on Bio-inspired Heuristics for Design Automation; EvoIASP,
the Tenth European Workshop on Evolutionary Computation in Image Analysis
and Signal Processing; EvoMUSART, the Sixth European Workshop on Evolu-
tionary Music and Art; EvoNUM, the First European Workshop on Bio-inspired
Algorithms for Continuous Parameter Optimization; EvoPhD, the Third Eu-
ropean Graduate Student Workshop on Evolutionary Computation; EvoSTOC,
the Fifth European Workshop on Evolutionary Algorithms in Stochastic and
Dynamic Environments, and EvoTransLog, the Second European Workshop on
Evolutionary Computation in Transportation and Logistics. Since 2007, all these
events have been grouped under the collective name EvoStar, and together they
constitute Europe’s premier event on evolutionary computation.



VI Preface

The papers presented at previous EvoCOP events have been published by
Springer in the Lecture Notes in Computer Science series. Below we report their
statistics.

EvoCOP submitted accepted acceptance ratio LNCS Volume
2001 31 23 74.2% 2037
2002 32 18 56.3% 2279
2003 39 19 48.7% 2611
2004 86 23 26.7% 3004
2005 66 24 36.4% 3448
2006 77 24 31.2% 3906
2007 81 21 25.9% 4446
2008 69 24 34.8% 4972

The rigorous, double-blind reviewing process of EvoCOP 2008 resulted in a
strong selection among the submitted papers; the acceptance rate was 34.8%.
Each paper was reviewed by at least three members of the international program
committee. All accepted papers were presented orally at the conference and
are included in this proceedings volume. We would like to thank the members
of our program committee, to whom we are very grateful for their thorough
work. EvoCOP 2008 contributions present new algorithms together with insight
into how well these algorithms can solve prominent example problems from the
literature or selected real-world problems.

We would like to express our sincere gratitude to the two internationally
renowned invited speakers, who gave the keynote talks at the conference: Pro-
fessor Emeritus H.-P. Schwefel from the University of Dortmund, Germany, IEEE
Fellow for contributions to evolutionary computation, and Stefano Nolfi, head
of the Laboratory of Artificial Life and Robotics of the Institute of Cognitive
Science and Technologies, National Research Council (CNR), Rome, Italy.

The success of the conference resulted from the input of many people to
whom we would like to express our appreciation. The local organizers, Ivanoe
De Falco, ICAR-CNR; Antonio Della Cioppa, University of Salerno; Ernesto
Tarantino, ICAR-CNR, and Giuseppe Trautteur, University of Naples Federico
II, did an extraordinary job for which we are very grateful. Gratitude goes to
Naples City Council for supporting the local organization and for their patronage
of the event. We thank Marc Schoenauer from INRIA in France for his support
with the MyReview conference management system. Thanks are also due to
Jennifer Willies and the Centre for Emergent Computing at Napier University
in Edinburgh, Scotland, for administrative support and event coordination. Last,
but not least, we would specially like to thank Jens Gottlieb and Günther Raidl
for their support and guidance; due to their hard work and dedication, EvoCOP
has now become one of the reference events in evolutionary computation.

March 2008 Jano van Hemert
Carlos Cotta
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José Enrique Gallardo, Universidad de Málaga, Spain
Michel Gendreau, Université de Montréal, Canada
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Andrea Lodi, Universitá degli Studi di Bologna, Italy
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Adaptive Tabu Tenure Computation in Local

Search

I. Devarenne, H. Mabed, and A. Caminada

UTBM, SET Lab, 90010 Belfort Cedex, France
{isabelle.devarenne, hakim.mabed, alexandre.caminada}@utbm.fr

Abstract. Optimization methods based on complete neighborhood ex-
ploration such as Tabu Search are impractical against large neighborhood
problems. Strategies of candidate list propose a solution to reduce the
neighborhood exploration complexity. We propose in this paper a generic
Tabu Search algorithm using adaptive candidate list strategy based on
two alternate candidate lists. Each candidate list strategy corresponds to
a given search phase: intensification or diversification. The optimization
algorithm uses a Tabu list containing the variables causing loops. The
paper proposes a classification of Tabu tenure managing in the literature
and presents a new and original Tabu tenure adaptation mechanism. The
generic method is tested on the k-coloring problem and compared with
some best methods published in the literature. Obtained results show
the competitiveness of the method.

1 Introduction

In this paper, we propose a generic Tabu Search based on Adaptive Candidate
List strategy, noted ACL TS. The method alternates the use of two candidate
lists [22] corresponding to intensification and diversification phases of search.
During the intensification phase, a variable v is chosen from the candidate list
CL I and moved. However, when a loop is detected, a variable belonging to
an extended candidate list CL D is selected during the next iteration. A loop
appears when a given variable is chosen more then a given threshold α dur-
ing the last M iterations. After loop detection, the variable causing the loop
is made Tabu. The choice of the loop variable is then forbidden (neighborhood
restriction) for a given number of iterations named Tabu tenure. Alternation of
intensification and diversification operators allows controlling the concentration
and the repartition of visited solutions in certain areas of search. The intensifica-
tion operator is based on the selection of a variable from a limited set of critical
variables. The diversification operator selects a different category of variables
covering a broader set of variables of the problem. The working scheme of the
generic method is given in figure 1.

ACL TS is applied to the k-coloring problem [6, 7]. The problem consists,
given an undirected graph, in coloring the nodes using only k colors in such
manner to assign different colors to adjacent nodes. From optimization point of
view, the objective is to minimize the number of conflicts due to reusing the

J. van Hemert and C. Cotta (Eds.): EvoCOP 2008, LNCS 4972, pp. 1–12, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 I. Devarenne, H. Mabed, and A. Caminada

Fig. 1. Adaptive candidate list strategy

same color on linked nodes. During ordinary iteration, intensification operator
chooses a node from the most conflicted nodes set. In the opposite, when a loop
is detected, a conflicted node is randomly chosen. A node is said in conflict when
it is colored with the same color than an adjacent node. In both cases the new
assigned color is chosen among the best ones (less used color by the adjacent
nodes).

Study performed in [6] shows that the method performances are very impacted
by the Tabu tenure value. The Tabu notion was introduced first by Tabu Search
method. Glover [13, 14] and Hansen and Jaumard [15], introduced a heuristic us-
ing a memory structure to exclude certain choices and restrict the neighborhood
of the current solution to a subset of V (s) also called accessible solutions. The
Tabu list structure memorizes some information on past moves such as: solutions
components, some moves or complete solutions. A Tabu tenure parameter has
been introduced to prohibit some actions for a given number of iterations. In the
literature there are different methods used to specify its value and its evolution
during the search.

The rest of the paper is organized into 4 sections. In the first section, we
present a classification of Tabu tenure specification approaches. Then in the
second section, we present an adaptive mechanism for Tabu tenure calculation
based on the number of visits of each variable. In the third section, we give
analysis of the method results on the well-known DIMACS instances. Finally, a
comparison with other famous works is made in section 4 and we conclude in
the last section.

2 Tabu Tenure in the Literature

The Tabu tenure is a critical parameter that greatly influences the performance of
the method. The duration of the prohibition period can be either static or
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dynamic. When the Tabu tenure is static, the value of Tabu duration is fixed
throughout the search. In other words, the number of iterations for which the move
is prohibited is fixed as in [16]. In the opposite, dynamic Tabu tenure varies dur-
ing the execution. Several studies, such as those conducted by Hao et al. [17], have
shown that a dynamic Tabu tenure could be more interesting than a static value.

We present different dynamic Tabu tenure computation used in the literature.
All the presented methods use a Tabu list structure. Tabu tenure specification
approaches are classified into four main method families: (a) approaches based on
the running time, (b) approaches using a range of possible values, (c) approaches
based on the current state of search, (d) approaches based on the historic of
search.

2.1 Time Depending Tabu Tenure

In this approach, the Tabu tenure value is adjusted according to the spent time or
to the current iteration number. The objective is then to progressively reduce the
diversification level by decreasing the Tabu tenure value. This kind of approach
is illustrated by Montemanni and Smith work [20] on the frequency assignment
problem. The Tabu tenure is decreased during the run after each Its iterations,
independently of the search progression following the expression: T = β × T ,
where β is a fixed value comprised in the interval [0, 1[. A value of β near to
1 allows to reduce slowly the Tabu tenure. The Tabu tenure T is equal to an
initial value Tinit at the beginning and to a minimum threshold Tmin at the end.
Parameters Tmin, β et Its are respectively fixed to 10, 0.96 and 5 × 104 for all
tested FAP instances. Comparison made in [20] with three fixed Tabu tenure
values shows that time depending Tabu tenure globally provides better results.

2.2 Random Bounded Tabu Tenure

In this second case, the Tabu tenure value is randomly chosen, at each iteration,
inside a fixed interval. This principle is the most used in the literature and it is
used as reference in this work. Intervals bounds are generally chosen according
to some characteristics of the problem. For example, in Di Gaspero and Schaerf
work [8], the Tabu tenure interval is calculated according to the number of
variables N using the following expression: [ 23 × N ; N ]. Taillard [21] proposed a
Tabu search method named robust taboo search method for quadratic assignment
problem. In this method, Tabu tenure value is randomly chosen every 2 × smax

iterations into the interval [smin; smax], where smin = �0.9 × N� and smax =
�1.1 × N�1. Another example is given by Bachelet and Talbi [1] where the Tabu
tenure is randomly chosen within the interval [N

2 ; 3×N
2 ].

2.3 Reactive Tabu Tenure

In the third approach, the Tabu tenure variation is a reaction to current solution
state and no historic of search past is used. At each iteration, several pieces
1 �� and �� represent respectively the integer part and integer part plus 1.
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of information are extracted from the current solution and used to define the
value of the prohibition period. Typically, these data designate the number of
conflicted variables or the number of neighbors of the current solution.

Galinier and Hao [11] have proposed to increase the Tabu tenure according to
the evaluation F (s) of the current solution s. In order to do that, two parameters
L (randomly chosen into the interval [0; 9]) and λ (empirically fixed to 0.6) have
been used as indicated in the following expression:

T = L + λ × F (s) (1)

In this work, Tabu tenure is maintained proportional to the cost function of the
current solution. The given values for both L and λ parameters allow obtaining
very good results. Although for other instances, parameter setting should be
envisaged.

2.4 Adaptive Tabu Tenure

In the fourth approach, Tabu tenure is adjusted during the search according to
the search history. We mention here three examples of adaptive Tabu tenure.

The first one is what Battiti et al. [2, 3] called Reactive Tabu Search method.
The idea is to use a search memory composed by the previously visited solutions.
After each move, the algorithm verifies if the current solution has already been
found. If it is the case, the Tabu tenure T is increased. Otherwise the Tabu
tenure value is decreased when no repetition is occurred during a sufficient long
time. The Tabu tenure T is initialized to 1 at the beginning of search. When a
solution is revisited, the Tabu tenure T is gradually increased using the following
equation:

T = min(max(T × 1.1, T + 1), L − 2) (2)

where L represents the number of 0/1 variables. In the worst case, when the
Tabu tenure is very high, two moves are possible. In [3], this method have been
applied to the quadratic assignment problem. Comparison with Tabu search
methods using static and interval based Tabu tenure shows very competitive
results particularly for the highest size problems.

In the approach of Blöchliger [4] named Approximated Cycle-Detection scheme
(ACD), the method detects the cycles without storing the previously visited
solutions. For that, a reference solution and a distance measurement are used.
Every iteration, the distance between the reference solution and the current one
is calculated. If this distance is equal to zero, a cycle is detected and the Tabu
tenure is increased by an increment value η. Otherwise, it is slowly decreased.
The parameter η varies during the search. Initialized to 5, it is incremented by
5 when a cycle is detected, and it is decremented by 1 every 15 000 iterations.
The efficiency of the method depends on when the reference solution is updated
and the relevance of used distance. The proposed method consists to update the
reference solution when the current one is better in term of evaluation function
and when the current solution is very far from the reference one.
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In Consistent-Neighborhood Tabu (CN-Tabu) [10] method, the resolution is
obtained by the exploration of partial solutions. Every iteration, a new assign-
ment (xi, vi) is made, where xi refers to an unassigned variable and vi to the new
assigned value. Each assignment (xj , vj) where xj is an adjacent assigned vari-
able is set Tabu and desinstantiated from the current solution. The Tabu tenure
is dynamically calculated according to the number of times that the value vj has
been assigned to the variable xj :

T (xj , vj) = nbmvt(xj , vj) (3)

where T (xj , vj) is the prohibition period associated to the assignment (xj , vj),
and nbmvt(xj , vj) is the number of times that the value vj has been assigned to
the variable xj during the search.

Typically, the historic is not used to determine how much the Tabu tenure
should be increased or decreased. Usually the historic provides only information
on when the Tabu tenure needs to be adapted.

We propose here an adaptive Tabu tenure calculation where the value of Tabu
tenure is adjusted separately for each decision variable. Memory structures and
statistical data are used to determine when a decision variable is made Tabu
and its prohibition period.

3 Adaptive Tabu Tenure in ACL TS Method

In this section, we describe the process of Tabu tenure adaptation. In [6], we have
compared dynamic and static Tabu tenure. In the dynamic case, the Tabu tenure
value is randomly chosen into the interval DT = [0.5 × c(N); 1.5 × c(N)] with
N is the variables number and c(N) the interval center. This variant is called
LD + DT . Table 1 presents the results obtained by the ACL TS : DT method
combining loop detection and Tabu list for different Tabu tenure intervals on
some Leighton instances (second DIMACS challenge instances2). These instances
have been generated by Leighton [18]. All Leighton graphs used the same number
of nodes (450) and the chromatic number is known. These instances are largely
used in the literature. Three comparison criteria are retained: s the success rate
over 10 runs, it the average number of iterations needed to resolve the instance
and c the average conflicts number of the best solution found.

Tabu tenure interval is calculated according to the number of variables N . We
observe that even if both instances presented in table 1 are composed of (450)
nodes, the best results are not found by the same calculation function. All runs
optimally solve the first problem with a Tabu tenure chosen in the first interval,
whereas the second problem is never solved. Only the second settings allows to
solve the second instance during 50% of runs. With the highest interval, both
instances are never solved. Consequently, the instance size defined by the number
of variables is not sufficient to determine the ideal value of Tabu tenure.

The dynamic adaptation of the Tabu tenure provides a serious alternative to
statically determine the value or the set of values of the parameter. The used
2 Available on http://mat.gsia.cmu.edu/COLOR/instances.html

http://mat.gsia.cmu.edu/COLOR/instances.html
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Table 1. Basic ACL TS (LD+DT): Influence of the interval of Tabu tenure

f(N)
[
0.5×

√
N
8 ; 1.5×

√
N
8

] [
0.5×

√
N
7 ; 1.5×

√
N
7

] [
0.5×

√
N
4 ; 1.5×

√
N
4

]

DIMACS s it c s it c s it c

le450 15a 10 429 118 0 5 147 775 2 0 - 4
le450 15b 0 - 1 5 296 529 2 0 - 4

method adjusts the Tabu tenure value according to the evolution of the search.
The idea is to analyze the desired effect of the Tabu status. In fact, a good
Tabu tenure value should prevent search cycles and should therefore be large
enough to exclude variables provoking loops and orient the search toward new
configurations.

We proposed to adapt Tabu tenure to each problem and to each variable of
the problem by the use of variable search history. In previous work we have
shown that the Tabu status is more efficient when it is applied only on variables
provoking loops [6]. In addition, we aim to determine dynamically the Tabu
tenure according to the number of loops provoked by each variable.

When a loop is detected the node source is made Tabu during a prohibition
period calculated as follow:

AT (xi) = rand(DT ) +
nbLoops(xi)∑

xj∈V

nbLoops(xj)
× N (4)

with nbLoops(xi) the number of loops provoked by the node xi and DT the
dynamic interval defined as follow:

DT =

[
0.5 ×

√
N

2
; 1.5 ×

√
N

2

]
(5)

This variant is noted LD+AT for Loop Detection and Adaptive Tabu tenure.

4 Study of the Tabu Tenure Repartition

This section presents the comparison between of the basic ACL TS based on
the LD+DT variant and the adaptive Tabu tenure (noted LD+AT) version.
We observe here the Tabu tenure used for each node and the number of loops
provoked per node. This study is made on some DIMACS instances: random
graphs named DSJCN.p when N is the number of nodes and p the probability
that two nodes are joined. DSJC instances are also largely used in the literature.
Figures 2 and 4 refers to a single successful run on the instance DSJC125.1.
Figures 3 and 5 concerns the same not successful run on DSJC500.1. The two
first figures correspond to the basic method LD+DT and the two others to the
adaptive one LD+AT. Spectrograms (a) show the use frequency of each Tabu
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(a) Tabu tenure used (b) Loops per node

Fig. 2. Method LD+TD instance DSJC125.1

(a) Tabu tenure used (b) Loops per node

Fig. 3. Method LD+TD instance DSJC500.1

tenure value (y-axis) per node. Darker points correspond to most used values.
Curves (b) represent the number of loops provoked by each node. In all curves
or spectrograms, the x-axis represents the nodes classified by ascending order of
degree.

For the method LD+DT, Tabu tenure used per node are chosen randomly into
an interval around f(N) =

√
N/2. Spectrograms 2(a) and 3(a) show uniform

repartition over the values of the interval. The nodes provoking the highest
number of loops (visible in 2(b) and 3(b) curves), appear with a dark color in
spectrograms 2(a) and 3(a).

Unlike the first two figures, the spectrograms 4(a) and 5(a) are very different:
Tabu tenure values are not uniformly used by the method LD+AT. We expect
from this mechanism a better diversification of the search in favor of variables
that are not involved in loops. Furthermore, according to the used equation
4, nodes causing most loops (curves 4(b) and 5(b)) use higher values of Tabu
tenure. The penalty has increased significantly the values of used Tabu tenure,
which corresponds to the expected behavior.
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(a) Tabu tenure used (b) Loops per node

Fig. 4. Method LD+AT instance DSJC125.1

(a) Tabu tenure used (b) Loops per node

Fig. 5. Method LD+AT instance DSJC500.1

We have observed the difference of both methods in term of Tabu tenure used
by each node during the search. Now, table 2 present comparatives results ob-
tained with these both methods on Leighton instances. Two comparison criteria
are used: the success rate s over 10 runs and the average iterations number it.

For all problems studied, we observed that adaptive Tabu tenure is generally
better in term of success rate or in term of average iterations number for 7 out
of 8 instances. Dynamic Tabu tenure is better only for the instance le450 5d.
Furthermore, the method is robust; it finds a solution to all the problems, which
demonstrates the effectiveness of the combination of adaptive Tabu tenure and
loop detection mechanism.

These results are confirmed by DSJC instances in table 3. The success rate
is better for the instance DSJC500.1 and the average number of unsatisfied
constraints is lower for the adaptive method (the tests were carried out on five
executions and graded from 0 to 10 according to their performance) for 5 out of
6 instances.
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Table 2. Adaptation of the Tabu tenure on Leighton instances

Dynamic Tabu tenure Adaptive Tabu tenure
LD+DT LD+AT

problems k s it s it

le450 5a 5 3 302 000 10 326 148
le450 5b 5 1 629 000 2 1 205 950
le450 5c 5 10 252 120 10 251 881
le450 5d 5 8 396 000 2 1 079 031

le450 15a 15 5 304 000 10 1 889 569
le450 15b 15 9 390 000 10 904 067
le450 15c 15 0 – 10 70.6 × 106

le450 15d 15 0 – 4 192.6 × 106

Table 3. Adaptation of the Tabu tenure on DSJC instances

Dynamic Tabu tenure Adaptive Tabu tenure
LD+DT LD+AT

problems s c s c

DSJC500.1 0 1 6 0.4
DSJC500.5 0 4.8 0 4.2
DSJC500.9 0 3.8 0 3.4

DSJC1000.1 0 15 0 13.4
DSJC1000.5 0 41.2 0 42.8
DSJC1000.9 0 4.4 0 4

5 Comparison with the Literature

In this section, we compare the results obtained by our method before and after
the adaptation of the Tabu tenure with four others well-known works published
in the literature. First column presents the studied instances and in the second
column, we give the chromatic number χ when it is known and the best number
of colors used to color each instance, noted k∗. Table 4 presents the minimum
number of colors used to solve each instance found by each method.

The first method is named HCA for Hybrid Coloring Algorithm published
by Galinier and Hao [11]. This hybrid method combines genetic algorithm and
Tabu search. The Tabu tenure is calculated using the mechanism explained in
the section 2.3. Notice that the algorithm has obtained the bests known results
for several DIMACS instances.

The second method published by Galinier et al. [12], is a population-based
method, named AMACOL (Adaptive Memory Algorithm for K-COLoring). This
algorithm is also one of the most efficient algorithms in the literature.

The third method is the Iterated Local Search (ILS) algorithm presented by
Chiarandini et al. in [5]. A Tabu search algorithm is run until the best solution
found does not change during a fixed number of iterations. A perturbation is
then applied on the best solution found so far and the Tabu search is run again.



10 I. Devarenne, H. Mabed, and A. Caminada

The last algorithm is the Generic Tabu Search (GTS) published by Dorne
and Hao [9]. This method uses reactive approach to compute the Tabu tenure
(see section 2.3). The search is started from a greedy initial solution built by
DSATUR procedure. The Tabu tenure depends on the number of conflicted
nodes of the current solution.

Finally, we present our results in the last two columns: first, the basic version
(LD+DT) and the adaptive Tabu tenure method (LD+AT) with DT interval
equal to

[
0.5×

√
N
2 ; 1.5×

√
N
2

]
for both methods.

Table 4. Comparison with other methods on DSJC and Leighton instances

problems (χ,k∗) HCA AMACOL ILS GTS LD+DT LD+AT

DSJC500.1 (-,12) - 12 13 13 13 12
DSJC500.5 (-,48) 48 48 50 50 50 49
DSJC500.9 (-,126) - 126 127 127 128 128

DSJC1000.1 (-,20) 20 20 21 21 21 21
DSJC1000.5 (-,83) 83 84 90 90 89 89
DSJC1000.9 (-,224) 224 224 227 226 230 227
le450 15c (15,15) 15 15 15 - 16 15
le450 15d (15,15) - 15 15 - 16 15
le450 25c (25,25) 26 26 26 - 26 26
le450 25d (25,25) - 26 26 - 26 26

Among the different methods presented here, the method HCA gets the best
performance. Our method using adaptive Tabu tenure outperforms our dynamic
Tabu tenure method. In particular, adaptive method allows to solve 5 instances
(in bold) with less colors than dynamic method on the 10 instances presented
in this table. Globally, our adaptive method obtained results of the same qual-
ity than HCA on 2 instances and than AMACOL on 5 instances. On random
graphs, results obtained by LD+AT are very competitive compared to the oth-
ers methods. Compared to ILS method, LD+AT obtained better results for 3
instances but it is worst for the instance DSJC500.9. For all others instances,
performance are identical in term of minimum number of colors needed.

6 Conclusion and Perspectives

In conclusion, we have seen that the Tabu tenure calculation impacts on the
global performance of Tabu list based methods. In the literature, several studies
have been undertaken to determine the value of the parameter. We have pro-
posed in this paper a new computation method of the Tabu tenure depending
on the specific search history of each variable. The idea is to compute the Tabu
tenure according to the number of loops provoked by each variable. We have
used the k-coloring problem as a framework for test our method. The presented
results show the effectiveness of our generic method comparing to competitive
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and specialized methods. The adaptive candidate list based Tabu Search was also
applied to structured frequencies plan affectation problem [19]. The method has
been ranked first among three proposed works (by other teams) in the frame of
the ALGOPDF project. In ACL TS method, only the variables provoking loops
become Tabu. The loop detection is determined by a threshold value specifying
the number of recent visits (during the M last iterations) after which a variable
is considered in loop. The Tabu mechanism being strongly impacted by the loop
detection, the study of this second parameter is critical.
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Abstract. This paper introduces a hybrid Tabu Search - Evolutionary
Algorithm for solving the binary constraint satisfaction problem, called
CTLEA. A continuation of an earlier introduced algorithm, called the
STLEA, the CTLEA replaces the earlier compound label tabu list with
a conflict tabu list. Extensive experimental fine-tuning of parameters
was performed to optimise the performance of the algorithm on a com-
monly used test-set. Compared to the performance of the earlier STLEA,
and benchmark algorithms, the CTLEA outperforms the former, and ap-
proaches the later.

1 Introduction

Solving constraint satisfaction problems (CSP) with evolutionary algorithms
(EAs) has been studied extensively over the years. This has resulted in the
introduction of a large number of algorithms. A study of the performance of a
representative sample of EAs, using a large randomly generated test-set, was
carried out in [1]. A more comprehensive study, using an updated test-set, also
including a large number of algorithm variants, can be found in [2]. There, it
was found that one algorithm variant, the Stepwise-Adaptation-of-Weights EA
with randomly initialised domain sets (rSAWEA), outperformed all other EAs.
However, when comparing the effectiveness and efficiency of this algorithm with
non-evolutionary algorithms, it was found that although the former could be
approximated, the algorithm still fell short of achieving the later.

A reason for this lack of efficiency was identified to be the lack of preventing
EAs from traversing already studied search-paths, something non-evolutionary
algorithms are usually prevented from doing. In [3] therefore, the Simple Tabu
List Evolutionary Algorithm (STLEA) was introduced, using a tabu list pre-
venting it from wasting computational effort on already traversed search-paths.
Tabu lists are a part of the Tabu Search (TS) meta-heuristic ([4]). They are used
to ensure that an algorithm does not return to an already searched neighbour-
hood by making it tabu. The Tabu Search meta-heuristic has found its way into
EAs before (e.g. [5,6,7,8]), especially for EAs handling constrained problems.
An important feature of tabu lists is that they are only referenced, i.e., only
insertion and look-up of elements is used. As such, they can be implemented as

J. van Hemert and C. Cotta (Eds.): EvoCOP 2008, LNCS 4972, pp. 13–24, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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a hash-set, ensuring constant time cost when a suitable hash function is chosen.
In [3] it was found that the STLEA, with a tabu list containing candidate solu-
tions, increased efficiency enough to surpass the rSAWEA, with equal or better
effectiveness. However, while comparing the performance of the STLEA to that
of non-deterministic algorithms, it was still found to have equal effectiveness but
inferior efficiency. Although, in [3], an important step was made in the right
direction, it was still not good enough to beat deterministic algorithms.

This paper endeavours to set the next step by refining the tabu list used in
the algorithm. Instead of focussing on candidate solutions for the tabu list, it
focusses on storing conflicts instead. There are two advantages to this approach.

First, the number of conflicts in a CSP-instance is smaller than the number of
possible candidate solutions, making the tabu list itself much easier to handle.
This makes the tabu list approach more viable for large CSP-instances as well.

Second, a conflict tabu list can be used more directly to guide the search-path,
than a candidate solution tabu list can. Whereas a candidate solution tabu list
is only useful to exclude generated candidate solutions (individuals), the conflict
tabu list can be used directly, for example by the crossover or mutation operator.
This change of focus for the tabu list results in the introduction of the Conflict
Tabu List Evolutionary Algorithm (CTLEA).

The paper is organised as follows: in section 2, a definition of constraint sat-
isfaction problems is given. Section 3 defines the proposed algorithm. The ex-
perimental setup is explained in section 4. Section 5 discusses the results of the
experiments, and finally in section 6, the conclusions that can be drawn from
this paper are set forth.

2 Constraint Satisfaction Problems

The Constraint Satisfaction Problem (CSP) is a well-known NP-complete sat-
isfiability problem ([9]). Defined informally as a set variables X and a set of
constraints C between these variables, it only allows variables to be assigned
values from their respective domains, denoted as Dx, x ∈ X . A label is then a
variable-value pair, denoted: 〈x, d〉, x ∈ X, d ∈ Dx, and assigning a value to a
variable is called labelling it. A compound label is a simultaneous assignment
of several values to their respective variables, and a constraint is then a set of
compound labels, with each compound label determining when the constraint is
violated. A compound label not in a constraint is said to satisfy that constraint,
while one that is, is called a conflict. A solution of a CSP is then defined as a
compound label that contains all variables, but no conflicts from any constraint.

The number of distinct variables in the compound labels of a constraint is
called the arity of that constraint, and these variables are said to be relevant to
this constraint. The maximum arity of all constraints in a CSP is the arity of
the CSP itself. In this paper, we only consider CSPs with an arity of two, mean-
ing that all constraints in the CSP have arity two as well. Such CSPs are called
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binary CSPs. Restricting the arity of the studied CSPs is not a restriction in
itself though, as [10] shows that every CSP can be transformed into an equivalent
binary CSP.

This paper will use the same test-set constructed in [2], and [3]. It consists of
model F generated solvable CSP-instances ([11]) with 10 variables and a uniform
domain size of 10 values. Complexity of these instances is determined by using
two complexity measures for the CSP: density (p1) and average tightness (p2),
both presented as a real number between 0.0 and 1.0 inclusive. Density is the
ratio between the maximum number of constraints of a CSP (

(|X|
2

)
for a binary

CSP) and the actual number of constraints (|C|). The tightness of a constraint
is defined as one minus the ratio between the maximum number of possible
conflicts (|Dx1 × Dx2 | for a binary constraint relevant to variables x1 and x2)
and the number of conflicts. The average tightness of a CSP is then the average
tightness of all constraints in the CSP.

In the density-tightness parameter space of all randomly generated CSP-
instances, the hard-to-solve instances can be found in what is called the mushy
region. For the test-set used, the following density-tightness combinations lie
within the mushy region 1 : (0.1, 0.9), 2 : (0.2, 0.9), 3 : (0.3, 0.8), 4 : (0.4, 0.7),
5 : (0.5, 0.7), 6 : (0.6, 0.6), 7 : (0.7, 0.5), 8 : (0.8, 0.5), and 9 : (0.9, 0.4). For each of
these density-tightness combinations, 25 CSP-instances were selected from a pop-
ulation of 1000 randomly generated CSP-instances (see [2] for selection criteria).
In total, the test-set includes 9·25 = 225 CSP-instances. The test-set can be down-
loaded at: http://www.emergentcomputing.org/csp/testset mushy.zip.

3 The Algorithm

The Conflict Tabu List Evolutionary Algorithm (CTLEA) is an evolutionary
algorithm using the Tabu Search meta-heuristic. In keeping with the simple def-
inition of Tabu Search as “a meta-heuristic superimposed on another heuristic”
([4]), the CTLEA uses only the tabu list. In the STLEA, as described in [3], the
tabu list was used to ensure that a compound label was not checked twice during
a run. A major criticism of this type of tabu list is that the number of possible
compound labels (candidate solutions), and therefore the amount of memory
needed to maintain it, could become quite large, depending mostly on CSP pa-
rameters. The CTLEA therefore focusses on conflicts, and uses the tabu list to
ensure that a conflict is not rechecked during a run. There are two advantages
from using tabu lists in this way. First, the number of conflicts of a CSP-instance
is smaller than the number of possible candidate solutions, addressing the crit-
icism above. This not only makes the tabu list easier to maintain, but allows
for the use of the tabu list for large CSP-instances as well. Second, a tabu list
focussing on conflicts can be used by the algorithm to guide the search-path
directly. Whereas a candidate solution tabu list is only useful to exclude whole
candidate solutions (individuals), a conflict tabu list can be used by, for exam-
ple, the crossover and mutation operators of the EA, to determine directly which
variables and values can be labelled.

http://www.emergentcomputing.org/csp/testset_mushy.zip


16 B.G.W. Craenen and B. Paechter

An example may provide more insight into the difference of size and subse-
quent cost of maintenance between a compound label and conflict tabu list. Let
us consider the worst-case scenario for both tabu lists. The test-set used has
10 variables, and a uniform domain size of 10 elements. If the compound label
tabu list were used, this means that in the worst-case, it should be able to store
1010 = 100, 000, 000, 000 compound labels, i.e., all possible candidate solutions.
On the other hand, if the conflict tabu list were used, again in the worst-case, it
should be able to store

(10
2

)
× 10 × 10 = 45 × 10 × 10 = 4500 conflicts, i.e., all

possible conflicts. This difference increases with scale as well. It must be noted
however, that on average, only a fraction of the compound labels was stored by
the STLEA in [3], although still substantially more than the number of conflicts
stored by the CTLEA.

The basic structure of the CTLEA, shown in algorithm 1, was kept purposely
close to that of the canonical EA. The biggest difference is that the CTLEA uses
a single variance operator, called move-operator, instead of a separate crossover-
and mutation operator.

The CTLEA works as follows. A population P of popsize individuals is ini-
tialised (line 2) and evaluated (line 3). The representation used by the individual,
and initialisation is described in 3.1, the objective function used to evaluate them
is described in section 3.2. The CTLEA then enters a while-loop wherein it it-
erates for a number of generations (line 4 to 9) until either a solution is found,
or the maximum number of conflict checks allowed (maxCC) has been reached
or exceeded (the stop condition in line 4). At the beginning of each iteration
of the algorithm, parents are selected from P into population S using biased
linear ranking selection ([12]) with bias bias (line 5). These parents are used by
the move-operator to create a new offspring population (line 6), as described
in section 3.4. The new offspring population is then evaluated by the objective
function (line 7). Finally, at the end of each iteration, the survivor selection oper-
ator selects individuals from the offspring population (S) into a new population
(P ) to be used for the next iteration/generation (line 8). No ’elitism’ is used
by the CTLEA, i.e., no individuals from the previous iteration/generation are
forcefully preserved for the next iteration/generation. The tabu list, described
in section 3.3, is used by both the objective function and the move-operator.

Algorithm 1: CTLEA

1 funct CTLEA(popsize, maxCC, bias) ≡
2 P := initialise(popsize);
3 evaluate(P );
4 while ¬solutionFound(P ) ∨ CC < maxCC do
5 S := selectParents(P, bias);
6 S := moveOperator(S);
7 evaluate(S);
8 P := selectSurvivors(S);
9 od
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3.1 Representation and Initialisation

A CTLEA individual consists of three parts: a compound label over all variables
of the CSP used as a candidate solution; a subset of the constraints defined by
the CSP, all violated by the candidate solution; and a field indicating which
variable was altered previously, called the changed variable field. The variable
stored by the changed variable field is called the changed variable.

A new individual is initialised by: labelling all variables in the compound label
uniform randomly from the respective domains of each variable; initialising the
subset of violated constraints to be empty (later to be used by the objective
function); and setting the changed variable field to unassigned (later to be used
by the move-operator).

Like the representation used in the STLEA in [3], the actual set of violated
constraints is used, instead of the derivative number of violated constraints com-
monly used. This reduces the number of conflict checks needed by the objective
function to determine the fitness of the individual. In exchange for this, more
care has to be taken while maintaining this set during the run. Note that in-
stead of actually storing the constraint itself, the index of the constraint in the
set of constraints from the CSP is used. This index can be used to easily retrieve
the actual constraint, reducing the memory needed were it to be stored in the
individual itself.

The changed variable field is used by the objective function and set by the
move-operator to quickly identify which variable has been changed, and conse-
quently which relevant constraints need to be checked. Although limited here to
a single variable, this mechanism can be extended in case more than one variable
can be changed, although this is not necessary for the CTLEA.

3.2 Objective Function

The objective of the CTLEA is to minimise the number of violated constraints.
A solution is found when a candidate solution violates no constraints. The ob-
jective function in the CTLEA then maintains the set of violated constraints of
an individual. The number of conflict checks necessary for one fitness evaluation
is reduced by only considering constraints relevant to the variable stored in the
changed variable field. First, the constraints relevant to the changed variable
are removed from the set of constraints stored by the individual. Then, all con-
straints in the CSP relevant to the changed variable are checked, and if violated
by the candidate solution, added to the set of constraints stored by the individ-
ual. Eventually, the set of constraints stored by the individual will contain all
constraints violated by the candidate solution stored by the individual.

For newly initialised individuals, all constraints are checked, and if violated by
the candidate solution, added to the set of constraints stored by the individual.

The objective function of the CTLEA uses the tabu list by first checking if
a conflict is in the tabu list before performing the conflict check on the CSP-
instance. If the conflict is found to exist in the CSP-instance, it is added to the
tabu list.
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3.3 Conflict Tabu List

The CTLEA maintains a tabu list of conflicts implemented as a hash set, indexed
over the constraint they are in. All conflicts found during the run of the CTLEA
are added to the conflict tabu list. Only conflicts not already in the the tabu list
are added, the list does not contain double entries.

The tabu list is used in only two ways, adding a conflict (insertion), and
checking if a conflict is in the tabu list (look-up). Since there is no need to alter
or remove a conflict once it has been added, both insertion and look-up can be
done in constant time (O(1)) depending on the quality of the hash-function, and
given adequate size of the hash table.

3.4 Move-Operator

The move-operator of the CTLEA takes a single individual (parent) to produce
a single child (offspring). The basic premise of the move-operator is simple: select
a variable to change, and change it in such a way that a child with fewer violated
constraints is created. As such, there are two choices to be made: which variable
to change; and what value to change the variable to.

The move-operator selects which variable to change by selecting one uniform
randomly from a multi-set of variables created in the following way. First, all
variables relevant to constraints in the set of constraints stored by the individual
are added. Then, all variables transitively dependent to the variables already in
the multi-set are added. A variable is transitive dependent to another variable,
if it is relevant to a constraint which the other variable is relevant to. Take,
for example, constraint c1, with its two relevant variables x1 and x2. If there is
another constraint c2, with relevant variables x1 and x3, then x3 is transitive
dependent to x1 and c1. A multi-set is used so that variables that are relevant
or transitive dependent to more than one constraint in the set stored by the
individual have a higher probability of being selected.

Value selection follows the same idea as variable selection, in that a value is
uniform randomly chosen from a set of values. The set of values is created by
checking for each value in the domain if it violates a relevant constraint. If it
does not, it is added to the set.

The move-operator uses the tabu list by first checking the tabu list if a value is
tabu, before checking the CSP-instance. If a value violates a relevant constraint,
the conflict is added to the tabu list as well. A simple example of this use of the
tabu list goes as follows. Supposed variable x1 is selected for change. A random
value for x1 is now chosen from the set of values V1, say v3. The tabu list is now
used to check if this value is in the tabu list. Since the tabu-list stored value-
pairs, all variables relevant through a constraint have are now selected. Say, only
variable x5 is relevant to x1, and in the current individual it has value v7. The
tabu list is now checked for the occurance of value pair: (〈x1, v3〉, 〈v5, v7〉). If
the value pair is on the tabu list, another value is selected for v1, if not the
move-operator ends. If in the object operator the tried value pair turns out to
be a conflict, it is added to the tabu list.
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The move-operator iteratively selects different variables and tries to select
values to them. No variable is selected twice, and a new variable is selected
only when no value can be found that does not violate its relevant constraints.
Selecting a variable twice is prevented by not adding a variable to the variable
multi-set if it has been selected earlier.

It is possible that all variables relevant, or transitively dependent have been
selected by the move-operator already. At this point, the remaining variables
are selected uniform randomly. If all possible variables have been selected, a new
individual is initialised and inserted in the offspring population. At this point,
the move-operator acts as a gradual restart strategy, by starting a new, randomly
chosen, search-path for the CTLEA to explore.

4 Experimental Setup

The test-set introduced in [2] was used for experimentation with CTLEA (see
section 2). Success rate (SR), and the average number of conflict checks to so-
lution (ACCS ), are used to measure the performance of the algorithm.

The SR measure is used to measure the effectiveness of an algorithm, and is
calculated by dividing the number of successful runs performed by the algorithm
by the total number of runs performed. A successful run is a run in which the
algorithm solves the CSP-instance. Usually given as a real number between 0.0
and 1.0, the SR can also be expressed as a percentage. A SR of 1.0 or 100%,
or perfect SR, means all runs solved their CSP-instance. Since the algorithm’s
primary task is to solve CSP-instances, the SR is perceived as the most important
performance measure to compare algorithms on. Accuracy of the SR measure is
affected by the total number of runs.

The ACCS measure is used to measure the efficiency of our algorithm, and
is calculated by averaging the number of conflict checks needed by an algorithm
over several successful runs. A conflict check is defined as the check made to see
if a conflict is in a constraint. Note that the ACCS measure includes all conflict
checks made by the algorithm, in the case of the CTLEA, this does also include
those made in the move-operator. Conflict checks made during unsuccessful runs
of an algorithm are discarded, and if all considered runs of an algorithm are
unsuccessful, the ACCS measure is undefined. Used as a secondary performance
measure for comparing algorithms, the accuracy is ACCS affected by the number
of successful runs and the total number of runs of an algorithm (the ratio of which
is the SR measure), i.e., ACCS is more accurate when SR is higher.

Efficiency performance measures have to take into account the computation
effort expended by an algorithm. The ACCS uses the number of conflict checks
as the atomic measure to quantify the expended computational effort however.
The CTLEA also expends computational effort on maintaining the tabu list
(see section 3). While comparing the effort spent on performing conflict checks
and maintaining the tabu list, it was found that the latter was negligible in
comparison to the former when the CSP-instance was sufficiently hard to solve.
Given that the CSP-instances used in the test-set are all taken from the mushy
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region in the density-tightness parameter space (see section 2), complexity of
the CSP-instances is sufficient to regard the computation effort of maintaining
the tabu list as negligible compared to that of performing the conflict checks.

The CTLEA is blessed with relatively few parameters to fine-tune: the popu-
lation size (popsize); the maximum number of conflict checks allowed (maxCC);
the bias of the biased linear ranking parent selection operator; and the size of
the parent population. Although it is possible to vary the size of the parent pop-
ulation, as in [3], we keep it equal to the number of individuals in the population
(popsize), with no noticeable effects on performance in preliminary experiments.
From [3], as well as other studies ([1,2]), we took 1.5 as bias for the biased linear
ranking selection operator. This leaves us with just two parameters to fine-tune:
popsize, and maxCC .

Although in [1] and [2] small population sizes were advocated, extensive exper-
imentation in [3] shows that larger populations were more appropriate, mostly
because of the beneficial effects on the population diversity. There is a trade-
off to consider though. With small populations, more computational effort can
be spend on increasing the fitness of the individuals over more generations. Al-
though a relatively small number of search-paths can be followed in parallel, they
can be followed to more depth. The drawback is that small populations have the
tendency to lose population diversity, thus increasing the risk of getting the al-
gorithm stuck in a local optimum from which it can not escape. On the other
hand, larger populations allow for more search-paths to be followed in parallel,
but to a lesser depth, while maintaining a higher population diversity. It is not
possible to predict where in the popsize-maxCC parameter space the optimum
parameter setting lies, and as such, we experimented with a large number of
parameter combinations to find it. This also allows us to identify the optimum
parameter settings for each density-tightness combination, in case this differs.

The experimental setup of the CTLEA is then as follows: for each CSP-
instance in the test-set (of which there are 225), we run the algorithm 10 times.
Varying combinations of population size (popsize) and maximum number of con-
flict checks allowed (maxCC) are used. The popsize parameter is taken from the
following set: {10}∪{50, 100, 150, . . . , 2000} (41 elements). The maxCC parame-
ter is taken from the following set: {100000, 200000, . . . , 2000000} (20 elements).
In total 225 × 10 × 41 × 20 = 1, 845, 000 runs were performed.

5 Results

Figure 1 summarises the results of the experiments described in the previous
section. It consists of 9 graphs, each showing the result for one density-tightness
combination in the test-set. The top row of graphs show the results for density-
tightness combinations 1 to 3, the middle row the results for density-tightness
combinations 4 to 6, and the bottom row the results for density-tightness com-
binations 7 to 9. Figure 1 shows the influence of different values of maxCC
on the SR for different values of popsize. Along the x-axis of each graph in
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Fig. 1. The relationship between the population size (x-axis) and the success rate
(y-axis) of the CTLEA for different maximum number of conflict checks allowed

figure 1 the popsize is shown, the y-axis shows the SR, while each curve in the
graph was found for different values of maxCC .

The same trend is noticeable for SR in all graphs: the SR first increases when
larger values for popsize and maxCC are used, but drops off sharply when the
popsize gets too large relative to the available maxCC . At the point where the
CTLEA solves all CSP-instances (SR = 1.0), just enough maxCC is available for
the popsize but not more. Beyond this point, SR decreases for increased popsize
but equal maxCC . Each curve therefore describes an arc with increasing SR
for larger values of popsize, until popsize is increased to the maximum value
able to be successfully maintained by the available maxCC , after which SR
decreases again. Differences between the different graphs in figure 1 can partially
be explained by differences in complexity between the different density-tightness
combinations. CSP-instances in density-tightness combination 1, for example,
are known to be easier to solve than those in density-tightness combination 9,
and the number of conflict checks needed to sustain the population while reaching
a perfect SR reflect that.

Table 1 shows, for each density-tightness combination, the first parameter com-
bination for reaching a perfectSR,popsize minimised before maxCC, as well as the
ACCS used to find the solutions. Note the increasing size of popsize and maxCC
needed for reaching a perfect SR for the different density-tightness combinations.
Because the CSP-instances for the different density-tightness combinations
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Table 1. Success rate (SR) and average conflict checks to solution (ACCS) for the best
population size (popsize) and maximum conflict checks allowed (maxCC) parameters.

SR ACCS popsize maxCC

1 1.0 1313 100 100000
2 1.0 4670 200 100000
3 1.0 20283 400 100000
4 1.0 50745 600 100000
5 1.0 94931 800 200000
6 1.0 167627 1100 300000
7 1.0 239106 1200 400000
8 1.0 254902 1050 700000
9 1.0 240046 950 500000

Table 2. Comparing the success rate and average conflict checks to solution of the
CTLEA, the STLEA, Hill-climbing algorithm with Restart (HCAWR), Chronological
Backtracking Algorithm (CBA), and Forward Checking with Conflict-Directed Back-
jumping Algorithm (FCCDBA)

CTLEA STLEA HCAWR CBA FCCDBA
SR ACCS SR ACCS SR ACCS SR ACCS SR ACCS

1 1.0 1313 1.0 2576 1.0 234242 1.0 3800605 1.0 930
2 1.0 4670 1.0 67443 1.0 1267015 1.0 335166 1.0 3913
3 1.0 20283 1.0 313431 1.0 2087947 1.0 33117 1.0 2186
4 1.0 50745 1.0 397636 1.0 2260634 1.0 42559 1.0 4772
5 1.0 94931 1.0 319212 1.0 2237419 1.0 23625 1.0 3503
6 1.0 167627 1.0 469876 1.0 2741567 1.0 44615 1.0 5287
7 1.0 239106 1.0 692888 1.0 3640630 1.0 35607 1.0 4822
8 1.0 254902 1.0 774929 1.0 2722763 1.0 28895 1.0 5121
9 1.0 240046 1.0 442323 1.0 2465975 1.0 15248 1.0 3439

(perhaps with the exception of density-tightness combination 1) were selected to
minimise complexity variance, the increasing popsize and maxCC needed to solve
the higher density-tightness combinations thus seems to reflect an aptitude of the
algorithm to solve CSP-instances with a lower tightness, i.e., fewer average con-
flicts per constraint.

Table 2 shows a comparison of the performance of the CTLEA with the
STLEA from [3], and benchmark algorithms from [2]. Table 2 shows that the
CTLEA outperforms STLEA on all CSP-instances with density-tightness combi-
nations. As the STLEA, the CTLEA compares favourably with the Hill-climbing
with Restart Algorithm (HCAWR), with efficiency measured in ACCS several
magnitudes better. Compared with the Chronological Backtracking Algorithm
(CBA), the CTLEA outperforms it on CSP-instances with density-tightness
combinations 1, 2, and 3, but is outperformed on all others. This shows that in
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the area where CTLEA has shown good performance, CSP-instances with lower
tightness, it can outperform a classical algorithm. Compared with the more so-
phisticated Forward Checking with Conflict-Directed Back-jumping Algorithm
(FCCDBA) (a combination of forward-checking [13] and conflict-directed back-
jumping [14]) however, the CTLEA can only approach performance on CSP-
instances the first two density-tightness combinations, but is outperformed in
all others. Overall, the CTLEA raised the performance bar a little higher for
EAs, but remains unable to beat sophisticated deterministic algorithms on effi-
ciency.

6 Conclusions

This paper introduced the Conflict Tabu Search Evolutionary Algorithm
(CTLEA) for solving binary constraint satisfaction problems. The CTLEA is
a hybrid algorithm, incorporating elements of an evolutionary and the tabu
search meta-heuristic. The CTLEA is based on the Simple Tabu Search Evolu-
tionary Algorithm (STLEA), introduced in [3], substituting its compound label
tabu list with a tabu list limiting the search space by storing of conflicts. The
rational behind choosing conflicts for the CTLEA tabu list is the comparatively
limited number of conflicts and their usefulness in the new move-operator. Like
the STLEA, the CTLEA maintains the basic structure of an evolutionary algo-
rithm, but merges the crossover and mutation operator in one ’move-operator’.
Further efficiency improvements were achieved by using the same representation
as was used in the STLEA.

A large number of parameter tuning experiments were performed for different
density-tightness combinations of a commonly used test-set. The performance
of the CTLEA with the best parameter settings was found to outperform the
STLEA, making it the best performing EA for solving the binary CSP found
thus far.

Although comparable in performance to the Chronological Backtracking Al-
gorithm on CSP-instances with lower tightness, the CTLEA continues to be out-
performed by the more sophisticated Forward Checking with Conflict Directed
Back-jumping Algorithm.

Future research will focus on comparing the relative behaviour of the CTLEA
to other algorithms when size of the CSP-instances is increased and the effects
of using different types of tabu lists on performance.
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Abstract. This paper presents a particle swarm optimization (PSO) al-
gorithm for solving the delay constrained least cost (DCLC) path prob-
lem, i.e., shortest path problem (SPP) with a delay constraint on the total
“cost” of the optimal path. The proposed algorithm uses the principle
of Lagrange relaxation based aggregated cost, where PSO and noising
metaheuristic are used for minimizing the modified cost function. It es-
sentially consists of two PSOs. The main PSO is basically a hybrid PSO-
Noising metaheuristic algorithm for efficient global search for the min-
imization part of the DCLC-Lagrangian relaxation by finding multiple
shortest paths between a source and a destination. The second/auxiliary
PSO is used to obtain the optimal Lagrangian multiplier for solving the
maximization part of the Lagrangian relaxation of the DCLC path prob-
lem. For the main PSO, a new path encoding/decoding scheme based
on heuristics has been devised for representing the paths as particles.
The comparative simulation results on several networks with random
topologies illustrate the efficiency of the proposed hybrid algorithm for
constrained shortest path computation.

1 Introduction

Shortest path problem (SPP) is one of the most fundamental problems in graph
theory. With the developments in communication, computer science, and trans-
portation systems, more variants of the SPP have appeared. For example, in
communication networks like IP, ATM, and optical networks, there is a need to
find a path with minimum cost while maintaining a bound on delay to support
Quality-of-Service applications. This problem is called the Delay Constrained
Least Cost (DCLC) path problem and is known to be NP-hard [1]. This paper
deals with the development of an evolutionary algorithm for this problem.

The Constrained Bellman-Ford (CBF) algorithm [2] solves DCLC by enumer-
ating the Pareto set, therefore has exponential worst-case complexity. An early,
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simple algorithm by Lee et al. [3] has tried each of the metrics and has checked
the feasibility. Pornavalai et al. [4] improved upon this idea by combining paths
calculated with different metrics. Another group of heuristic algorithms [5,6,7,8]
referred to as Linear Aggregated Metric (LAM) first constructs a single metric
from all metrics and then applies a shortest-path algorithm. Handler and Zang
[9] proposed a Lagrangian method to solve the single constraint SPP. They first
solve the Lagrangian dual of the problem and then close the (potential) duality
gap with a k-shortest path algorithm. Jüttner et al. [10] applied the algorithm
on practical networks with improving running time. In the Lagrangian method,
when optimal multipliers are found, we have a lower bound on the problem.
An upper bound could be achieved through the solution process of the relaxed
problem. If the lower bound and the upper bound have equal value, then we
have an optimum solution. If there is a duality gap, the lower bound is less than
the upper bound then an extra step has to be performed to try to close the gap,
if an optimal solution is wanted. The main issue is how to find the optimum La-
grangian multipliers. Handler and Zang [9] used the cutting plane method and
Beasely [11] used subgradient optimization while Jüttner’s method [10] is based
on an algebraic approach. Although these methods find good near-optimum so-
lutions in most of the cases, these solutions are not always the optimum path.
Besides that, these methods are not extendable for more than one constraint.

In this paper, two cooperating PSOs have been used to solve the DCLC path
problem being formulated as a Lagrange relaxation based aggregated cost prob-
lem. It essentially consists of two PSOs. The main PSO is basically a hybrid
PSO-noising metaheuristic algorithm for efficient global search for the minimiza-
tion part of the DCLC-Lagrangian relaxation by finding multiple shortest paths
between a source and a destination. The noising metaheuristic [12] have been
embedded into the main PSO for effective local search around any better parti-
cle found in every PSO iteration. The second/auxiliary PSO is a co-evolutionary
PSO to obtain the optimal Lagrangian multiplier for solving maximization part
of the Lagrangian relaxation of the DCLC path problem. For the main PSO, a
new path encoding/decoding scheme based on heuristics has been devised for
representing the network paths as particles.

The outline of this paper is as follows. Section 2 describes the mathematical
formulation of the DCLC path problem. In Section 3, the basic algorithm of PSO
is discussed along with a brief description of the noising metahueristic. Section 4
presents the path encoding/decoding technique used for particle representation
of network paths for PSO. Section 5 describes how a cooperative PSO is used
along with the main PSO for obtaining optimal Lagrange multiplier in solving
the DCLC path problem. Section 6 discusses the experimental results followed
by the conclusions in the final section.

2 Delay Constrained Least Cost (DCLC) Path Problem

Let G = (V, E) be an undirected graph comprising a set of nodes V = {vi}
and a set of edges E = V × V connecting nodes in V . Corresponding to each
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edge, there is a nonnegative number cij representing the cost of the edge/link
and a nonnegative delay (transmission/propagation) dij from node vi to node
vj . A path p from a source node s to a destination node t is a sequence of
nodes in which no node is repeated. The total cost of this path is referred to by
c(p) =

∑
(i,j)

cij and the total delay by d(p) =
∑
(i,j)

dij . The delay constrained least

cost (DCLC) path problem is to find the minimum cost path p∗ such that the
delay d(p∗) is under a given limit (constraint) Δdelay:

DCLC : min
p∈P (s,t)

c(p) such that d(p) ≤ Δdelay (1)

where P (s, t) is the set of paths between node s and node t.

2.1 Lagrange Relaxation for the DCLC Problem

We use the same terminology as in [10] to describe the Lagrangian relaxation
to the DCLC problem. For each link (i, j) in the network graph, an aggregated
cost cμ is defined as:

cμ = cij + μdij , μ ≥ 0 (2)

For any specific μ, cμ(p) denotes the aggregated cost of the path p. The La-
grangian relaxation of DCLC path problem, L(μ), is defined as:

L(μ) = min
p∈P (s,t)

{c(p) + μd(p)} − Δdelay = min
p∈P (s,t)

cμ(p) − μΔdelay (3)

where L(μ) is a lower bound to the DCLC problem. To obtain the best lower
bound,L(μ) is maximized over:

L∗ = max
μ≥0

L(μ) (4)

For any fixed μ ≥ 0, solving Eq.(3) requires the solution of a shortest-path
problem with Lagrangian-modified edge length. The main issue is to find the
optimum μ that maximizes Eq.(4). Jüttner et al. [10] used an algebraic approach
to solve Eq.(4). Their method (LARAC) is briefly described below.

If a path found at an iteration is minimum with respect to cμ and its delay is
larger than or equal to the threshold Δdelay , this path is called pc. If its delay
is smaller than or equal to the threshold Δdelay, this path is called pd. If the
aggregated cost cμ of pc is equal to that of pd, a value μ ≥ 0 will maximize
the function L(μ). In this case, cμ(pc) = cμ(pd) and, hence, μ = {cμ(pc) −
c(pd)}/{dμ(pd) − dμ(pc)}. With this μ, a new cμ-minimal path r is found. If
cμ(r) = cμ(pd) = cμ(pc), the optimal μ is found; otherwise, r is set as the
new pc or pd according to whether r is infeasible (d(r) > Δdelay) or feasible
(d(r) ≤ Δdelay). Then, the same steps are repeated to find a new value of μ.

However, as noted in [10], this method does not always give the optimal
path when there is a duality gap. In this study, a cooperative particle swarm
technique is used to solve the DCLC path problem and compare its performance
with LARAC algorithm.
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3 Hybrid PSO and Noising Metahueristic for Shortest
Path Problem

Particle swarm optimization (PSO) is a population based stochastic optimization
tool inspired by social behavior of bird flock (and fish school etc.), as developed
by Kennedy and Eberhart in 1995 [13]. The algorithmic flow in PSO starts with
a population of particles whose positions, that represent the potential solutions
for the studied problem, and velocities are randomly initialized in the search
space. The search for optimal position (solution) is performed by updating the
particle velocities, hence positions according to the following two equations:

PVid = PVid + φ1r1(Bid − Xid) + φ2r2(Bn
id − Xid) (5)

i = 1, 2..Ns, and d = 1, 2, .., D

Xid = Xid + PVid (6)

where φ1 and φ2 are positive constants, called acceleration coefficients, Ns is the
total number of particles in the swarm, D is the dimension of problem search
space, i.e., number of parameters of the function being optimized, r1 and r2
are two independently generated random numbers in the range [0, 1] and n
represents the index of the best particle in the neighborhood of a particle. The
other vectors are defined as: Xi = [Xi1, Xi2...XiD] ≡ Position of i-th particle;
PVi = [PVi1, PVi2...PViD ] ≡ Velocity of the i-th particle; Bi ≡ Best position
of the i-th particle, and Bn

i ≡ Best position found by the neighborhood of the
particle i. When the convergence criterion is satisfied, the best particle (with its
position) found so far is taken as the solution to the problem.

However, in most cases, the velocities quickly attain very large values, espe-
cially for particles far from their global best. To control the increase in velocity,
velocity clamping is used in Eq.(5). Thus, if the right side of Eq.(5) exceeds
a specified maximum value ±PV max

d , then the velocity on that dimension is
clamped to ±PV max

d . In [14], Maurice proposed the use of a constriction factor
to prevent velocity from growing out of bound. The algorithm has been named
the constriction factor method(CFM) where Eq.(5) is modified as:

PVid = χ[PVid + φ1r1(Bid − Xid) + φ2r2(Bn
id − Xid)] (7)

i = 1, 2..Ns, andd = 1, 2, ..., D

χ = 2(
∣∣∣2 − φ −

√
φ2 − 4φ

∣∣∣)−1 (8)

To improve the search capability of PSO in terms of quality and speed, a
hybrid PSO/Noising metaheuristic based algorithm is implemented to solve the
shortest path problem. This hybrid algorithm constitutes the main PSO that is
used to find multiple shortest paths. The basic idea of noising method is: for
computation of the optimum of a combinatorial optimization problem, instead
of taking the genuine data into account directly, they are perturbed by some
progressively decreasing “noise” while applying local search [12]. The reason
behind the addition of noise is to be able to escape any possible local optimum
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in the optimizing function landscape. A noise is a value taken by a certain
random variable following a given probability distribution. More description of
the hybrid PSO/Noising method can be found in [15].

4 Network Path Encoding for the Shortest Path
Computation Using Hybrid PSO Algorithm

In order to exploit the global as well as the local search capability of the proposed
hybrid PSO/Noising metaheuristic based algorithm for shortest path problems,
an efficient path encoding/decoding is required for representing every possible
path in the network as a particle in PSO. We have proposed in [16] a tree
based encoding/decoding for the shortest path problem. Here, we give a brief
description of this technique. The particle contains weights (real numbers) that
are decoded to build a Shortest Paths Tree (SPT). This tree is represented by
the predecessors vector and built progressively from iteration to iteration. In the
end, the shortest path tree will contain the shortest path from the source to the
destination. Each particle keeps two vectors, the prev[v] representing the node
previous to node v and the C[v] recording the total cost of path from node v to
the source. The C[v] vector is initialized to ∞. In every iteration, the particle
is decoded as follows: Initially, the tree consists only of the root (source node).
The next node j from the nodes that have direct link (i, j) to the current one i
is selected to be appended to the partial tree based on the following formula:

j = argmin{cijwj |(i, j) ∈ E}, wj ∈ [−1.0, 1.0] (9)

where wj is the weight of the node j in the particle and cij is the cost of the
edge between node i and node j. Thus the role of the weights in the particle is
to bias the edge costs in order to select the next node to be appended to the
current partial tree. In a relaxation test, if the next node j to be appended to
the current tree has a better cost (cj) than previously recorded in C[j], the C[j]
will be updated and so does prev[v]; otherwise cj is set to the previous value of
C[j]. Algorithm 1 lists the steps of this procedure.

4.1 Fitness Function

While this decoding technique being implemented in a PSO framework, one point
to consider is: how to decide on the “badness” or the “goodness” of a particle.

Since C[v] gets updated only if a less cost is found, it does not reflect the
fitness of the particle. That is because a bad particle does not update the cost
vector. Another case is that a path deemed as an invalid path does not end at
the destination. Therefore, a fitness function reflecting these issues needs to be
devised. Such a strategy is given below.

The cost cj , cost of the path ending at node j, calculated from decoding the
particle’s weights, is taken as the fitness of the particle. If the path does not end
at the destination, a penalty is added to the fitness of the particle as shown in
Eq.(10) (ρ is a penalty value):
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Algorithm 1. Pseudo codes for tree based decoding procedure.
ParticleDecoding (PARTICLE)
σ ← 0, i ← s, ws ← N∞, k = 0 # N∞ is a specific large number

# n is a number of nodes
while (i �= t && k < n) do

k ← k + 1
j ← argmin{cijwj |j ∈ A(i), wj �= N∞} # A(i) the set of nodes adjacent to i
cj ← ci + cij

if (cj < C[j]) then
C[j] ← cj

prev[j] ← i
else

cj ← C[j]
i ← j
pi ← N∞

end if
if ({j ∈ A(i), wj �= N∞} = φ) then

σ = 1
break

end if
end while
return cj + σρ

Fitness = cj + σ.ρ (10)

where σ =
{

1 j �= t (invalid path)
0 j = t (valid path)

According to Eq.(10), if the decoded path does not end at destination node
t, a penalty factor ρ will be added.

The best path found by the particle is simply decoded from the vector prev[v].
For the case, when the edges have more than one weight (say,delay), the decoding
process is modified with Eq.(9) being re-formulated as:

j = argmin{(cij + dij)wj |(i, j)E}, wj ∈ [−1.0, 1.0] (11)

Thus, the next node j will be appended to the partial tree if the combined
effect of the cost and delay of the edge connecting the current node i with node j
is the minimum among all the adjacent nodes to the current node i. The cost ,cj ,
of the path decoded from a particle which ends at node j will represent (cj +dj).

5 Cooperative Hybrid PSO-Noising Method Based
Algorithm for DCLC Path Problem

This section describes cooperative PSO-based hybrid search algorithm for the
DCLC path problem. There is a single constraint: d(p) ≤ Δdelay where p ∈
P (s, t). Eq.(4) is now re-written as:
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L∗(μ, p) = max
μ≥0

{ min
p∈P (s,t)

cμ(p) − μΔdelay} (12)

Two separate populations of PSOs are involved in this cooperative PSO. The
main (first) PSO, PSO1, hybridized with the Noising metaheuristic focuses on
evolving weights (position vector) of the particles with a “frozen” value for μ.
Inside the iteration of this main PSO, when a particle experiences improvement,
the noising method is called to fine search and to further improve the fitness of
the particle. If the noising method is able to find a better path, the fitness of
the particle will be updated. The first PSO is responsible for generating multiple
shortest paths based on the combined cost cij +μdij . The set of paths represents
an approximation of the L(μ, p) over μ ≥ 0. The second (auxiliary) PSO, PSO2,
focuses on evolving Lagrangian multiplier μ using the set of the paths found by
the first (main) PSO population. Only the multiplier μ is represented in the
auxiliary PSO population. The two PSOs work together and exchange informa-
tion to obtain the best value for Eq.(12). For the main PSO, the problem is a
minimization problem and the objective function is:

fmain(p) = min
μ∈PSO2

cμ(p) (13)

For the auxiliary PSO, the problem is a maximization problem and the fitness
of each individual μ is evaluated according to

faux(p) = max
p∈PSO1

L(μ, p) (14)

The PSO1 population is initialized randomly and the fitness is calculated
with initial μ being set at some value (say, 100). The PSO1 runs for a number
of iterations (iteraPSO1) with edges’ costs set to the aggregated cost cij +μdij .
At the end of these iterations, a set of paths (the number of paths equals the
population size) will be generated. This set represents the best paths found
with a specified Lagrangian multiplier during that stage of running the main
PSO. This set of constructed paths is passed to the auxiliary PSO. The cost
and delay of these paths are used in the fitness function of the auxiliary PSO
defined in Eq.(14). The auxiliary PSO is initialized and runs for a number of
iterations (iteraPSO2) searching for a new optimum value of μ that maximizes
Eq.(14). This value is passed to the first PSO to run again for (iteraPSO1) and
generates a new set of paths and so on. In each iteration of the main PSO, a
particle is checked for a path with less cost and delay that does not exceed the
delay constraint.

The criterion for the path decoding process is now modified. Thus, Eq.(9) is
changed to include the Lagrangian multiplier μ:

j = argmin{(cij + μ.dij)wj |(i, j) ∈ E}, wj ∈ [−1.0, 1.0] (15)

The two PSOs run for a maximum number of cycles (maxcycles). The total
number of iterations will be maxcycles ∗ (iteraPSO1 + iteraPSO2).
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6 Simulation Results and Discussion

The proposed PSO-based hybrid cooperative algorithm for DCLC path problem
is evaluated on networks with random and varying topologies1 through computer
simulations. The edges’ costs and delays are randomly and independently chosen
from different ranges. To prevent the DCLC problem from being trivial, the delay
constraint is chosen as:

Δdelay = 0.75 ∗ d(pLD) + 0.25 ∗ d(pLC) (16)

where d(pLD) is the delay of the least delay path and d(pLC) is the delay of
the least cost path. In all the simulation tests, the optimal solution obtained
using Constraint Bellman Ford (CBF) algorithm [2] is used as reference for
comparison purposes. Ref. [10] shows that Lagrange Relaxation based Aggre-
gated Cost (LARAC) has the best performance compared with other algo-
rithms, therefore the performance of the proposed algorithm is compared with
it. The selection of parameter settings of the co-evolutionary PSOs are shown in
Table 1.

Table 1. Parameters of Main PSO (PSO1) and Auxiliary PSO (PSO2)

PSO1 PSO2

Population size 50 10
Maximum velocity [-1,1] [0,10]
Constriction factor 0.74 0.74
Maximum Iterations 500 10
Neighborhood Topology Ring Ring

The parameters for the noising metaheuristic are set as described in [15].
The maximum and minimum noise rates are 100 and 0 respectivily. he maxi-
mum number of trials is set to 50. The maximum number of trials at a fixed
noise rate is 10. The elementary transformation for local neighborhood search
is taken as the swapping of node weight values at two random positions of
a particle weight/position vector and two such swapping transformations are
successively applied in each trial for generating a trial solution in the local
search.

Two parameters are used to measure the performance assessment. They are:
(1) average success rate (SR) and (2) average excess cost (EC). The average
calculation is performed over 100 runs for each network topology. The success
rate is defined as the percentage of runs that the algorithm finds the DCLC

1 The random network topologies are generated using Waxman model [17] in which
nodes are generated randomly on a two dimensional plane of size 100 × 100, and

there is a link between two nodes u and v with probability p(u, v) = α.e
−d(u,v)

βL ,
where 0 < α, β ≤ 1, d(u, v) is the Euclidean distance between u and v, and L is the
maximum distance between any two nodes.
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path according to CBF algorithm over the total number of runs (CBF gives
the optimum path). The second parameter, the average excess cost (EC), is
defined as:

EC =
C(pA) − C(pCBF )

C(pCPF )
(17)

where C(pA) is the cost of the path found by algorithm “A” and C(pCBF ) is
the cost of the path found by the CBF algorithm. Table 2 shows a comparison
of the average success rates (SR) and the average excess cost (EC) under two
ranges for the cost and delay: range [1, 20] and range [1, 100]. For example, for
the network of 100 nodes and 281 edges and for the cost and delay in the range
[1, 20], the PSO algorithm is able to find the optimum path (that is the path
with the minimum cost and delay less than Δdelay) with a success rate of 93%
compared with 54% for the LARAC algorithm. In addition, the excess cost of
the non-optimum paths found by PSO is much less than that of the paths found
by LARAC (0.12% in case of PSO compared with 2.5% in the case of LARAC).
This suggests that the non-optimum paths found by PSO is very close to the
optimum ones while those found by LARAC have a big gap with the optimum
ones in terms of the cost. The same applies for the other cases.

Table 2. Performance comparison between LARAC [10] and PSO for the DCLC path
problem

No. of No. of PSO LARAC PSO LARAC
Nodes Edges Cost =[1,20] Cost =[1,20] Cost =[1,100] Cost =[1,100]

Delay=[1,20] Delay=[1,20] Delay=[1,100] Delay=[1,100]
% SR % EC % SR % EC % SR % EC % SR % EC

100 281 93 0.12 54 2.5 91 0.2 51 2.7
100 255 100 0.0 59 1.7 95 0.1 51 1.6
90 249 98 0.06 52 2.5 94 0.18 50 2.5
90 227 97 0.02 64 1.2 92 0.11 59 1.5
80 231 97 0.03 58 2.2 99 0.01 50 2.4
80 187 98 0.08 57 1.6 92 0.01 60 1.3
70 321 98 0.09 61 3.2 97 0.07 56 4.0
70 211 96 0.1 54 4.1 97 0.03 52 2.7
60 232 98 0.04 56 3.2 97 0.07 60 3.1
50 159 99 0.04 73 2.7 97 0.07 67 3.4

Next, the effect of changing the delay constraint Δdelay on the performance of
the algorithms is investigated. The network topology of 100 nodes and 281 edges
in Table 2 is taken as an example. First the cost and the delay are in the [1, 100]
range and the delay bound Δdelay is changed from 300 to 700. The costs of the
best feasible paths (that with the minimum cost and delay less than the bound)
found by the two algorithms are compared with the optimum ones computed by
CBF algorithm. Fig.1 (a) shows the results of this comparison. The costs of the
feasible paths found by PSO coincide with those found by CBF irrespective of
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Fig. 1. Effect of the delay constraint on the performance, cost and delay taken in (a)
1 - 100 (b) 1 - 20

the values of Δdelay . In the case of LARAC algorithm, the value of the constraint
influences the performance, which can be seen in extra cost when the constraint
is less than 600. The reason is that LARAC is not able to find the optimum
path when Δdelay is small. The same test has been conducted but with the cost
and delay taken in the range of [1, 20] and the constraint changes from 70 to
150. Fig. 1 (b) shows the result of this experiment. Again the PSO algorithm
has better performance. The two graphs show that the performance of the PSO
based algorithm is more adaptable to the constraint’s change and it is able to
find the optimum path even when the constraint is small.

7 Conclusions

In this paper, a cooperative PSO method based algorithm is presented and tested
for solving the delay constrained least cost (DCLC) path problem. A new tree
based encoding/decoding scheme for the particles in PSO and network path
construction from it has also been devised. The delay constraint is relaxed and
added to the objective in Lagrangian fashion. Intensification of the refined search
around potential regions is used to solve the minimization part of the Lagrangian
relaxation problem in the main PSO while the auxiliary PSO is used to solve the
maximization part of the problem by finding optimum Lagrangian multiplier.
Comparison simulation with another heuristic algorithm (LARAC) show that
the proposed algorithm produces good results in terms of higher success rates
for getting the optimal path and less excess cost for the non-optimum paths.
Although the PSO based algorithm can not compete yet in term of the time
complexity but it has the advantage that it is easier to be extend for more
than one constraint. This is can be done by including the extra constraints in
the auxiliary PSO. For future work, we would like to extend this algorithm
for solving multi-constrained SPP and enhance its performance for large-scale
networks.
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Abstract. We consider the generalized traveling salesman problem in
which a graph with nodes partitioned into clusters is given. The goal is
to identify a minimum cost round trip visiting exactly one node from
each cluster. For solving difficult instances of this problem heuristically,
we present a new Variable Neighborhood Search (VNS) approach that
utilizes two complementary, large neighborhood structures. One of them
is the already known generalized 2-opt neighborhood for which we
propose a new incremental evaluation technique to speed up the search
significantly. The second structure is based on node exchanges and the
application of the chained Lin-Kernighan heuristic. A comparison with
other recently published metaheuristics on TSPlib instances with geo-
graphical clustering indicates that our VNS, though requiring more time
than two genetic algorithms, is able to find substantially better solutions.

Keywords: Network Design, Generalized Traveling Salesman Problem,
Variable Neighborhood Search.

1 Introduction

The Generalized Traveling Salesman Problem (GTSP) extends the classical
Traveling Salesman Problem (TSP) and is defined as follows. We consider an
undirected weighted complete graph G = 〈V, E, c〉 with node set V , edge set E,
and edge cost function c : E → R

+. Node set V is partitioned into r pairwise
disjoint clusters V1, V2, . . . , Vr,

⋃r
i=1 Vi = V, Vi ∩ Vj = ∅, i, j = 1, . . . , r, i �= j.

V1 V2

V3

V4
V5

p1

p2

p4

p5p3

Fig. 1. Example for a GTSP solution
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A solution to the GTSP defined on G is a subgraph S = 〈P, T 〉 with P =
{p1, p2, . . . , pr} ⊆ V connecting exactly one node from each cluster, i.e. pi ∈ Vi

for all 1 ≤ i ≤ r, and T ⊆ E being a round trip, see Fig. 1. The costs of
such a round trip are its total edge costs, i.e. C(T ) =

∑
(u,v)∈T c(u, v), and the

objective is to identify a solution with minimum costs. When edge costs satisfy
the triangle inequality, even if we allow more than one node per cluster to be
connected, an optimal solution of the GTSP always contains only one node from
each cluster [11]. Obviously, the GTSP is NP-hard since it contains the classical
TSP as the special case in which each cluster consists of a single node only.

The GTSP finds practical application particularly in many variants of routing
problems, e.g. when some good can be delivered to multiple alternative addresses
of customers. Occasionally, such applications can be directly modeled as the
GTSP, but more often the GTSP appears as a subproblem [9].

In this paper, we present a general Variable Neighborhood Search (VNS)
approach [6] for heuristically solving this problem. As local improvement within
VNS, we use Variable Neighborhood Descent (VND) based on two different types
of exponentially large neighborhoods, which can be seen as dual to each other.
One neighborhood structure is the generalized 2-opt, which has been introduced
in [19]; for it, we propose a new incremental evaluation scheme leading to a
substantial speed-up. As second neighborhood structure we investigate a new
approach: the nodes to be spanned from each cluster are fixed and TSP tours
are derived via the chained Lin-Kernighan algorithm.

Section 2 gives an overview on research done on the GTSP so far. In section
3, we describe the initialization procedures, followed by section 4 explaining
the neighborhood structures in detail. Section 5 shows the VNS settings, and
experimental results are discussed section 6. Finally, we conclude in section 7.

2 Previous Work

The GTSP was introduced independently by Henry-Labordere [7], Srivastava et
al. [22], and Saskena [20]. Laporte et al. [11,10] provided integer programming
formulations for the symmetrical and asymmetrical GTSP, respectively. The for-
mulation for the symmetrical case was later enhanced by Fischetti et al. [4] who
proposed several classes of facet defining inequalities and corresponding separa-
tion procedures. Based on these, they developed a branch-and-cut algorithm [5]
which could solve instances with up to 442 nodes to optimality.

Several approaches exist which transform the GTSP into the classical TSP.
They have been studied by Noon and Bean [16], Lien et al. [13], Dimitrijevic and
Saric [2], Laporte and Semet [12], and Behzad and Modarres [1]. Unfortunately,
many transformations substantially increase the numbers of nodes and edges and
are therefore of limited practical value. Furthermore, some transformations even
require additional constraints, thus making general algorithms for the classical
TSP inapplicable. Among the more efficient approaches, Dimitrijevic and Saric
[2] proposed a transformation of the GTSP into the TSP on a digraph containing
twice the number of nodes compared to the original graph. This technique was
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further improved by Behzad and Modarres [1] where the transformed graph has
the same number of nodes as the original graph. However, the transformation
increases edge costs significantly, what may lead to problems in some cases.

To approach larger GTSP instances, various metaheuristics have been sug-
gested. Renaud et al. [19] developed a complex composite heuristic whose
components can be used for other (meta-)heuristics as well. They introduced
generalized k-opt heuristics which are derived from Lin’s classical 2-opt and 3-
opt local search for the TSP [14]. Snyder and Daskin [21] describe a Genetic
Algorithm (GA) that achieves relatively good results in short running times. It
uses random keys to encode solutions and a parameterized uniform crossover op-
erator including local improvement based on the 2-opt heuristic to boost solution
quality. Wu et al. [23] also proposed a GA using a direct representation in which
the spanned nodes from each cluster and the sequence in which they are visited
in the tour are stored. This approach has further been enhanced by Huang et
al. [8] who apply a so-called hybrid chromosome encoding. However, reported
results are on average inferior when compared to those of the GA from [21].

3 Solution Representation and Initialization

In our VNS, we represent a solution S = 〈P, T 〉 in a direct way by storing the
spanned nodes of each cluster P = {p1, p2, . . . , pr} with pi ∈ Vi, i = 1, . . . , r,
and additionally the visiting order in the round trip as circular permutation
π = 〈π1, . . . , πr〉 of the cluster indices {1, . . . , r}.

Depending on the instance type we use two different procedures to compute
feasible initial solutions for the VNS. Both are extensions of well-known greedy
strategies for the classical TSP. The first algorithm is the (generalized) Nearest
Neighbor Heuristic (NNH), and it can in principle be applied to all kinds of
instances. The second procedure is specifically targeted to Euclidean instances
where the clustering is based on geographical proximity. It exploits Euclidean
coordinates of nodes and is called Generalized Insertion Heuristic (GIH). The
following paragraphs describe these algorithms in detail.

3.1 Nearest Neighbor Heuristic for the GTSP (NNH)

Noon [17] suggested this approach, which computes a feasible solution as follows.
We begin to construct a tour Sv from an arbitrarily chosen starting node v ∈ V .
Iteratively, the algorithm always continues to the closest node belonging to a
cluster that has not been visited yet and includes the corresponding edge. When
nodes of all clusters have been reached, the tour is closed by including a final
edge back to node v. This process is carried out once for each node in V as
starting node, and the best tour is retained. See also Algorithm 1.

3.2 Generalized Insertion Heuristic for the GTSP (GIH)

This heuristic is inspired by the composite heuristic GI3 from Renaud et al. [18].
In a first phase, it determines the set of spanned nodes P by calculating for
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Algorithm 1. Nearest Neighbor Heuristic

for v ∈ |V | do
Sv = ∅
W = V
add v to Sv

v′ = v
for i = 1, . . . , r − 1 do

remove from W all nodes belonging to the same cluster as v′

u = node in W nearest to v′

add u to the partial tour Sv

v′ = u

return tour S = Sv∗ with v∗ = argminv∈V C(Sv)

each cluster Vi the node pi having the lowest sum of distances to all other nodes
in other clusters. After fixing these nodes, the CLOCK heuristic from [19] is
performed to construct a tour containing many but not necessarily all nodes
of P .

Recall that GIH only works on Euclidean instances where the nodes’ coordi-
nates are given. The CLOCK heuristic begins a partial tour S at the northern-
most node from P . In case of a tie, the easternmost node among the northernmost
nodes is chosen. This initial insertion is followed by four loops: In the first loop
the procedure appends to S the northernmost node to the east of the last in-
serted node. In case of a tie, the easternmost node among these is chosen again.
The process is repeated until there are no nodes to the east of the last appended
node. The second, third, and forth loops work in the same way by appending to
S the easternmost node to the south, the southernmost node to the west, and
the westernmost node to the north of the last inserted node, respectively.

When the CLOCK heuristic terminates, there are in general some nodes from
P left which are not yet included in the tour S. In contrast to the more complex
GI3 heuristic [18], we simply choose for each of these remaining nodes pj ∈ P \H
greedily the “cheapest” insertion position k so that c(pπk−1 , pj) + c(pj , pπk

) −
c(pπk−1 , pπk

) ≤ c(pπi−1 , pj) + c(pj , pπi) − c(pπi−1 , pπi) ∀i = 1, . . . , |H | with π0 =
π|H|.

As a final step, we try to improve the obtained feasible tour S by calling the
shortest path algorithm, which will be introduced in Sect. 4.1. This procedure
may replace nodes by other nodes of the same cluster, but it does not modify the
visiting order π anymore. See Algorithm 2 for more details of the whole GIH.

This construction heuristic is much faster than the original GI3, mainly be-
cause the latter uses a more sophisticated local improvement. Nevertheless, solu-
tions obtained by GIH are typically only slightly inferior, and it usually takes just
a few VNS iterations to catch up with or exceed the quality of GI3’s solutions.

While NNH has time complexity Θ(r · |V |2), GIH can be implemented in time
Θ(|V |2) and usually finds significantly better solutions to Euclidean instances
with geographical clustering. However, GIH’s applicability is far more limited.
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Algorithm 2. Generalized Insertion Heuristic

for i = 1, . . . , r do
pi = node in Vi with the least sum of costs to all other nodes in other clusters

partial tour S = CLOCK heuristic({p1, . . . , pr})
for j = 1, . . . , r do

if pj �∈ S then
k = minargi=1,...,|S| (c(pπi−1 , pj) + c(pj , pπi) − c(pπi−1 , pπi)), π0 = π|S|
insert pj at position k in S

apply shortest path algorithm on S
return S

4 Neighborhood Structures

In our VNS, we use two complementary neighborhood structures. On the one
hand, we approach the GTSP from the global view by first deciding in which
order the clusters are to be visited and then computing an optimal selection of
spanned nodes. On the other hand, we may start from the opposite direction
and define a set of nodes for which we derive an appropriate tour.

4.1 Generalized 2-opt Neighborhood (G2-opt)

Renaud et al. [18] introduced the generalized 2-opt heuristic, which is based on
the well known 2-opt heuristic for the classical TSP [14]. G2-opt is defined on a
circular permutation π = 〈π1, . . . , πr〉 indicating the visiting order of the clusters
〈Vπ1 , . . . , Vπr〉, see Fig. 2(a). A particular permutation π thus represents the set
of all feasible round trips 〈pπ1 , pπ2 , . . . , pπr〉 with pπi ∈ Vπi , i = 1, . . . , r, and
this set is in general exponentially large with respect to the number of nodes.
However, the minimum cost round trip can be determined via a shortest path
algorithm in polynomial time.

Given the visiting order of clusters, we can construct a graph containing edges
only between nodes of consecutive clusters and a clone of the starting cluster
attached to the last cluster, as it is shown in Fig. 2(b).

(a)
V2V1

V4
V5V3

(b)

V4 V5 V3 V1 V2 V ′4

Calculation direction

π1 π2 π3 π4 π5 π′1〈 〉

Fig. 2. (a) Visiting order of clusters characterized by permutation π = 〈4, 5, 3, 1, 2〉
and (b) corresponding graph on which the shortest path algorithm is applied, starting
at the first node of cluster V4 and ending at its clone in cluster V ′

4
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On this graph, we calculate shortest paths starting from each node of the
starting cluster and ending at its clone. To ensure that at most one node is
included from each cluster, we may simply assume the edges to be directed ac-
cording to π. The overall cheapest path represents the optimal tour for this
cluster order. Formally speaking, let Luv denote the length of the shortest
path from node u ∈ Vπk

to node v ∈ Vπl
, k < l. Let Lu be the length of

the shortest path containing r-edges, starting from u ∈ Vπ1 , and ending at its
clone in V ′π1

. The length L of the overall shortest tour respecting visiting order
π is:

L = minu∈Vπ1
Lu

Lu = minv∈Vπr
(Luv + c(v, u)) ∀u ∈ Vπ1

Luv = c(u, v) ∀u ∈ Vπ1 , ∀v ∈ Vπ2

Luv = minw∈Vπk−1
(Luw + c(w, v)) ∀u ∈ Vπ1 , ∀v ∈ Vπk

, k = 3, . . . , r

To reduce the computational effort, we exploit the fact that π is rotation-
invariant and choose Vπ1 so that it is a cluster of smallest cardinality. The com-
plexity of this dynamic programming algorithm is bounded by O(|Vπ1 | · n2/r).

Our generalized 2-opt neighborhood of a current solution S having cluster
ordering π can now be defined as the set of all feasible round trips induced by
any cluster ordering π′ that differs from π by precisely one inversion Iij , i.e.
π′ = 〈π1, . . . , πi−1, πj , . . . , πi, πj+1, . . . , πr〉, 1 ≤ i < j ≤ r.

Incremental bidirectional shortest path calculation. Instead of determin-
ing the shortest path L always from Vπ1 (a cluster with the smallest number of
nodes) to the cloned cluster V ′π1

, we can partition this task into three parts:

1. Perform shortest path calculations in forward direction from u ∈ Vπ1 to each
node of a cluster Vπm where m may be chosen arbitrarily.

2. Perform shortest path calculations in backward direction starting from u′ ∈
V ′π1

to each node of cluster Vπm+1 where u′ is the clone of node u.
3. Consider all edges in Em = {(a, b) ∈ E | a ∈ Vπm ∧ b ∈ Vπm+1} and the

corresponding complete paths from u to u′ including the above determined
shortest paths to nodes in Vπm and Vπm+1 , respectively. Take a (a∗, b∗) ∈ Em

yielding an overall shortest path, i.e. Lua∗ +c(a∗, b∗)+Lb∗u′ ≤ Lua+c(a, b)+
Lbu′ ∀(a, b) ∈ Em.

This procedure, illustrated in Fig. 3, is in practice almost equally efficient
as the simple one-way dynamic programming algorithm. When considering that
we want to search the general 2-opt neighborhood, however, it provides the
advantage of allowing for a substantially faster incremental evaluation scheme:
If π′ differs from π by an inversion Iij with i ≤ m ≤ j, we do not have to
recalculate the distances and predecessors of the nodes in clusters Vπ1 , . . . , Vπi−1

and Vπj+1 , . . . , V
′
π1

, assuming we have stored these values in steps 1 and 2 before.
As a matter of course, m is always chosen to lie within the inversion interval.

Clusters from Vπi to Vπj are marked “invalid” for both calculation directions
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V4 V5 V3 V1 V2 V ′4

Calculation direction 1 Calculation direction 2

π1 π2 π3 π4 π5 π′1〈 〉

Fig. 3. Example for a bidirectional shortest path calculation with m = 3

after performing the inversion. Whenever we apply the shortest path algorithm
in a particular direction, the evaluation is skipped for all clusters which are
still valid, and the actual computation starts at the first invalid cluster. When
processing these clusters, their “invalid” flags are removed.

To fully exploit this incremental evaluation, we further enumerate the possible
inversions of π in a specific way: First, all inversions of pairs of two adjacent
clusters are considered from left to right, then the inversions of all triplets in the
reverse direction from right to left, next all 4-cluster inversions from left to right
again, etc. Hereby, π1 (and its clone in the corresponding graph for the shortest
path calculation) remain fixed. See also Fig. 4. This strategy allows the largest
data-reuse and minimizes the total number of clusters for which computations
are necessary. It is in particular advantageous when we use a next improvement
strategy in the local search, since we start with inversions of smallest size yielding
the largest time savings; see Algorithm 3.

In the worst case, when we have to evaluate the whole neighborhood, O(r2)
inversions must be considered. A naive complete enumeration would require time
O(r2 · |Vπ1 | · n2/r) = O(|Vπ1 | · n2 · r). To be more precise, we have (r − l + 1)
possibilities for inversions of length l, l = 2, . . . , r − 2. For each of them, the
classical shortest path algorithm would have to consider all r clusters. However,
with the incremental bidirectional shortest path calculation, we only have to
consider l + 1 clusters after the first iteration. Hence, the classical algorithm
evaluates

∑r−2
l=2 r · (r − l + 1) = r3−r2−6r

2 clusters while the incremental scheme

π1 π2 π3 π4 πr−2 πr−1 πr〈 〉. . .

. . .

. . .. . .

2-node path inversions

3-node path inversions

π5 πr−3

Fig. 4. Enumeration order of the inversions on π for making best use of the incremental
bidirectional shortest path calculations
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Algorithm 3. Search Generalized 2-opt Neighborhood (S)

for l = 2, . . . , r − 2 do
if l is even then

for i = 2, . . . , r − l + 1 do
π′ = 〈π1, . . . , πi−1, πi+l−1, . . . , πi, πi+l, . . . , πr〉
Apply incremental bidirectional shortest path calculation on π′

if obtained solution S′ is better than original solution S then
return solution S′

else
for i = r − l + 1, . . . , 2 do

π′ = 〈π1, . . . , πi−1, πi+l−1, . . . , πi, πi+l, . . . , πr〉
Apply incremental bidirectional shortest path calculation on π′

if obtained solution S′ is better than original solution S then
return solution S′

return: no better solution found, i.e. S is a local optimum w.r.t. G2-opt

only processes
∑r−2

l=2 (l + 1) · (r − l + 1) = r3+6r2−25r−6
6 clusters for the whole

neighborhood. Asymptotically, the latter is faster by factor 3.

4.2 Node Exchange Neighborhood (NEN)

With this new neighborhood structure, the search focuses on the set of spanned
nodes P = {p1, . . . , pr}. The node exchange neighborhood of a current solution
S with spanned nodes P includes all feasible tours S′ for each node set P ′ that
can be derived from P by replacing one spanned node pi ∈ Vi, i ∈ {1, . . . , r}, by
another node v of the same cluster Vi. This neighborhood therefore is induced
by

∑r
i=1(|Vi| − 1) = O(|V |) different node sets resulting in a total of O(|V | · r!)

round trips.
Unfortunately, determining the minimum cost round trip for a given node set

P ′ is NP-hard since this subproblem corresponds to the classical TSP. Hence,
instead of calculating the optimal round trip, we use the well known Chained
Lin-Kernighan (CLK) algorithm [15] implemented in the Concorde library1 to
find a good but not necessarily optimal tour S′ for a certain P ′.

Though the size of this TSP is relatively small (|P ′| = r), a complete eval-
uation of NEN is relatively time-demanding – even when using CLK – since
we have to solve O(|V |) different TSPs. To further speed up the neighborhood
search, we restrict CLK to consider edges of the k-nearest-neighbor graph in-
duced by P ′ only. For Euclidean instances and available point positions, this
k-nearest-neighbor graph is efficiently derived using a KD-tree data structure.
Tuning the parameter k, we can balance between speed and thoroughness of the
search process. For the actual tests, we set k to 10. Algorithm 4 summarizes the
steps of evaluating NEN.
1 www.tsp.gatech.edu/concorde.html
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Algorithm 4. Search Node Exchange Neighborhood (S)

for i = 1, . . . , r do
forall v ∈ Vi \ {pi} do

P ′ = P \ {pi} ∪ {v}
determine k-nearest-neighbor graph Gk induced by P ′

apply CLK on Gk to obtain round trip S’
if current solution S′ better than so far best then

save S′ as so far best

restore and return best solution found

5 Variable Neighborhood Search Framework

We use the general variable neighborhood search (VNS) scheme with embedded
variable neighborhood descent (VND) as proposed in [6].

Arrangement of the neighborhoods in VND: We alternate between G2-opt and
NEN in this order. G2-opt is always considered first since its evaluation has a
lower computational complexity.

Shaking in VNS: To perform shaking, we randomly exchange s spanned nodes
by other nodes of the corresponding clusters and apply s random swap moves
on the cluster ordering π. A swap move exchanges two positions in π. Parameter
s depends on the number of clusters in the input graph and varies from 1 to r

7 .
We obtained the best results with these settings for s during our tests.

6 Computational Results

We tested the VNS on TSPlib2 instances with geographical clustering which
is done as follows [3]. First, r center nodes are chosen to be located as far as
possible from each other. This is achieved by selecting the first center randomly,
the second center as the farthest node from the first center, the third center as
the farthest node from the set of the first two centers, and so on. Then, the
clustering is done by assigning each of the remaining nodes to its nearest center
node. We consider the largest of such TSPlib instances with up to 442 nodes,
97461 edges, and 89 clusters.

Our experiments were performed on a Pentium 4 2.6 GHz PC. In order to
compute average values and standard deviations, we performed 30 runs for each
instance. The VNS terminated after 10 consecutive outer iterations without find-
ing a new best solution.

Table 1 presents results of our VNS and compares them to those of Fischetti
et al’s exact branch-and-cut algorithm (B&C) [5], the GI3 heuristic [19], the
random key GA (rk-GA) [21], and the hybrid chromosome GA (hc-GA) [8].

2 http://elib.zib.de/pub/Packages/mp-testdata/tsp/tsplib/tsplib.html
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Listed are for each instance its name, the numbers of nodes and clusters, the
optimal solution value and run-time of B&C, and average percentage gaps of
the heuristics’ final objective values to the optimum solution value, as well as
corresponding CPU-times. Best results are printed bold.

Since the B&C algorithm ran on a HP 9000/720, the GI3 heuristic on a Sun
Sparc Station LX, the rk-GA on a Pentium 4, 3.2 GHz PC, and the hc-GA on
a 1.2 GHz PC, it is hard to compare the CPU-times directly. Nevertheless, it
is obvious that in particular the rk-GA is very fast and computes high quality
results within a few seconds. Comparing VNS with both GAs, VNS requires
significantly more time, but it is often able to find superior solutions.

Especially on the larger instances with ≥ 299 nodes, VNS benefits from the
sophisticated large neighborhood search and its average gaps of are consistently
substantially smaller than those of all other considered heuristics. For 18 out of
the 28 instances, VNS was even able to obtain optimal solutions in all of the 30
performed runs; its total average gap is only 0.05%, and no average gap exceeds

Table 1. Results on TSPlib instances with geographical clustering

Instance B&C GI3 rk-GA hc-GA VNS

Name |V | r Copt time gap time gap time gap time gap σgap time

kroa100 100 20 9711 18.4s 0.00% 6.8s 0.00% 0.4s - - 0.00% 0.00 2.5s
krob100 100 20 10328 22.2s 0.00% 6.4s 0.00% 0.4s - - 0.00% 0.00 0.4s
rd100 100 20 3650 16.6s 0.00% 7.3s 0.00% 0.5s - - 0.00% 0.00 0.9s
eil101 101 21 249 25.6s 0.40% 5.2s 0.00% 0.4s - - 0.04% 0.12 16.3s
lin105 105 21 8213 16.4s 0.00% 14.4s 0.00% 0.5s - - 0.00% 0.00 0.6s
pr107 107 22 27898 7.4s 0.00% 8.7s 0.00% 0.4s - - 0.00% 0.00 0.5s
pr124 124 25 36605 25.9s 0.43% 12.2s 0.00% 0.6s - - 0.00% 0.00 26.6s
bier127 127 26 72418 23.6s 5.55% 36.1s 0.00% 0.4s - - 0.00% 0.00 1.4s
pr136 136 28 42570 43.0s 1.28% 12.5s 0.00% 0.5s - - 0.00% 0.00 48.1s
pr144 144 29 45886 8.2s 0.00% 16.3s 0.00% 1.0s - - 0.00% 0.00 4.0s
kroa150 150 30 11018 100.3s 0.00% 17.8s 0.00% 0.7s 0.00% 0.4s 0.00% 0.00 1.2s
krob150 150 30 12196 60.6s 0.00% 14.2s 0.00% 0.9s 0.00% 0.9s 0.00% 0.00 3.7s
pr152 152 31 51576 94.8s 0.47% 17.6s 0.00% 1.2s 0.00% 0.6s 0.00% 0.00 7.6s
u159 159 32 22664 146.4s 2.60% 18.5s 0.00% 0.8s 0.00% 1.0s 0.00% 0.00 22.6s
rat195 195 39 854 245.9s 0.00% 37.2s 0.00% 1.0s - - 0.01% 0.04 105.6s
d198 198 40 10557 763.1s 0.60% 60.4s 0.00% 1.6s - - 0.02% 0.05 141.3s
kroa200 200 40 13406 187.4s 0.00% 29.7s 0.00% 1.8s 0.01% 1.8s 0.00% 0.00 16.9s
krob200 200 40 13111 268.5s 0.00% 35.8s 0.00% 1.9s 0.06% 8.0s 0.00% 0.00 18.8s
ts225 225 45 68340 37875.9s 0.61% 89.0s 0.02% 2.1s 0.13% 19.0s 0.03% 0.07 274.4s
pr226 226 46 64007 106.9s 0.00% 25.5s 0.00% 1.5s 0.00% 0.6s 0.00% 0.00 1.7s
gil262 262 53 1013 6624.1s 5.03% 115.4s 0.79% 1.9s 0.00% 41.2s 0.05% 0.16 372.5s
pr264 264 53 29549 337.0s 0.36% 64.4s 0.00% 2.1s 0.00% 3.1s 0.01% 0.04 268.2s
pr299 299 60 22615 812.8s 2.23% 90.3s 0.11% 3.2s 0.10% 68.6s 0.00% 0.01 220.5s
lin318 318 64 20765 1671.9s 4.59% 206.8s 0.62% 3.5s 0.72% 18.3s 0.30% 0.61 320.1s
rd400 400 80 6361 7021.4s 1.23% 403.5s 1.18% 5.9s 2.15% 17.4s 0.74% 0.51 502.0s
fl417 417 84 9651 16719.4s 0.48% 427.1s 0.05% 5.3s 0.12% 19.4s 0.00% 0.00 92.4s
pr439 439 88 60099 5422.8s 3.52% 611.0s 0.26% 9.5s 0.76% 10.9s 0.12% 0.11 519.0s
pcb442 442 89 21657 58770.5s 5.91% 567.7s 1.70% 9.0s 0.94% 31.8s 0.08% 0.08 596.6s

Average gaps 1.26% 0.17% 0.30% 0.05%
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0.75%. From all considered heuristics, GI3 was the weakest, with worst average
results and running times in the same order of magnitude as our VNS.

In particular for the two large instances pr226 and fl417, already VND was able
to directly identify the optimal solutions, i.e. merely alternating between G2-opt
and NEN was sufficient to get to the global optima, and no VNS iterations were
required. This documents how well these neighborhood structures complement
each other.

7 Conclusions and Future Work

In this article, we proposed a variable neighborhood search approach for the gen-
eralized traveling salesman problem utilizing two large neighborhood structures.
They can be seen as dual to each other: While G2-opt predefines the possi-
ble cluster orderings and uses a relatively sophisticated but efficient procedure
for augmenting these partial solutions with appropriate selections of nodes, the
situation is vice versa in the newly proposed NEN.

Considering in particular G2-opt, the described incremental evaluation scheme
turned out to be a major speed-up factor in comparison to the previously used
evaluation via independent standard shortest path calculations.

It further turned out that the VNS slightly benefits from a good starting
solution. Therefore, we described the more generally applicable nearest neighbor
heuristic and particularly for Euclidean instances with given point positions the
generalized insertion heuristic. Both are reasonably fast and provide solutions of
appropriate quality.

We tested the VNS on TSPlib instances with geographical clustering consist-
ing of up to 442 nodes. Compared to two recent genetic algorithms, the VNS
performs slower, but it is able to generate remarkably better solutions, in par-
ticular for larger instances.

Future work will in particular include tests on other types of instances, e.g.
with non-Euclidean distances and incomplete graphs. An incremental evaluation
scheme for NEN seems to be a challenging task but might further speed up the
algorithm. Promising is also the combination of these neighborhood structures
with others, and to investigate their application in other types of metaheuristics.

References

1. Behzad, A., Modarres, M.: A new efficient transformation of the generalized travel-
ing salesman problem into traveling salesman problem. In: Proceedings of the 15th
International Conference of Systems Engineering, pp. 6–8 (2002)

2. Dimitrijevic, V., Saric, Z.: An efficient transformation of the generalized traveling
salesman problem into the traveling salesman problem on digraphs. Information
Science 102(1-4), 105–110 (1997)

3. Feremans, C.: Generalized Spanning Trees and Extensions. PhD thesis, Universite
Libre de Bruxelles (2001)

4. Fischetti, M., Salazar, J.J., Toth, P.: The symmetric generalized traveling salesman
polytope. Networks 26, 113–123 (1995)



Effective Neighborhood Structures for the GTSP 47

5. Fischetti, M., Salazar, J.J., Toth, P.: A branch-and-cut algorithm for the symmetric
generalized traveling salesman problem. Operations Research 45, 378–394 (1997)

6. Hansen, P., Mladenovic, N.: An introduction to variable neighborhood search.
In: Voss, S., et al. (eds.) Meta-heuristics, Advances and trends in local search
paradigms for optimization, pp. 433–458. Kluwer Academic Publishers, Dordrecht
(1999)

7. Henry-Labordere.: The record balancing problem: A dynamic programming solu-
tion of a generalized traveling salesman problem. RAIRO Operations Research B2,
43–49 (1969)

8. Huang, H., Yang, X., Hao, Z., Wu, C., Liang, Y., Zhao, X.: Hybrid chromosome
genetic algorithm for generalized traveling salesman problems. Advances in Natural
Computation 3612, 137–140 (2005)

9. Laporte, G., Asef-Vaziri, A., Sriskandarajah, C.: Some applications of the gen-
eralized travelling salesman problem. Journal of the Operational Research Soci-
ety 47(12), 1461–1467 (1996)

10. Laporte, G., Mercure, H., Nobert, Y.: Generalized traveling salesman problem
through n sets of nodes: The asymmetric case. Discrete Applied Mathematics 18,
185–197 (1987)

11. Laporte, G., Nobert, Y.: Generalized traveling salesman problem through n sets of
nodes: An integer programming approach. INFOR 21(1), 61–75 (1983)

12. Laporte, G., Semet, F.: Computational evaluation of a transformation procedure
for the symmetric generalized traveling salesman problem. INFOR 37(2), 114–120
(1999)

13. Lien, Y.N., Ma, E., Wah, B.W.S.: Transformation of the generalized traveling
salesman problem into the standard traveling salesman problem. Information Sci-
ences 74(1–2), 177–189 (1993)

14. Lin, S.: Computer solutions of the traveling salesman problem. Bell Systems Com-
puter Journal 44, 2245–2269 (1965)

15. Martin, O., Otto, S.W., Felten, E.W.: Large-step Markov chains for the traveling
salesman problem. Complex Systems 5, 299–326 (1991)

16. Noon, C., Bean, J.C.: An efficient transformation of the generalized traveling sales-
man problem. INFOR 31(1), 39–44 (1993)

17. Noon, C.E.: The Generalized Traveling Salesman Problem. PhD thesis, University
of Michigan (1988)

18. Renaud, J., Boctor, F.F.: An efficient composite heuristic for the symmetric gener-
alized traveling salesman problem. European Journal of Operational Research 108,
571–584 (1998)

19. Renaud, J., Boctor, F.F., Laporte, G.: A fast composite heuristic for the symmet-
ric traveling salesman problem. INFORMS Journal on Computing 8(2), 134–143
(1996)

20. Saskena, J.P.: Mathematical model of scheduling clients through welfare agencies.
Journal of the Canadian Operational Research Society 8, 185–200 (1970)

21. Snyder, L.V., Daskin, M.S.: A random-key genetic algorithm for the generalized
traveling salesman problem. Technical Report 04T-018, Dept. of Industrial and
Systems Engineering, Lehigh University, Bethlehem, PA, USA (2004)

22. Srivastava, Kumar, S.S.S., Garg, R.C., Sen, P.: Generalized traveling salesman
problem through n sets of nodes. CORS Journal 7, 97–101 (1969)

23. Wu, C., Liang, Y., Lee, H.P., Lu, C.: Generalized chromosome genetic algorithm
for generalized traveling salesman problems and its applications for machining.
Physical Review E 70(1) (2004)



Efficient Local Search Limitation Strategies for

Vehicle Routing Problems

Yuichi Nagata1 and Olli Bräysy2
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Abstract. In this paper we examine five different strategies for limiting
the local search neighborhoods in the context of vehicle routing prob-
lems. The vehicle routing problem deals with the assignment of a set of
transportation orders to a fleet of vehicles, and the sequencing of stops
for each vehicle to minimize transportation costs. The examined strate-
gies are applied to three standard neighborhoods and implemented in
a recently suggested powerful memetic algorithm. Experimental results
on 26 well-known benchmark problems indicate significant speedups of
almost 80% without worsening the solution quality. On the contrary, in
12 cases new best solutions were obtained.

1 Introduction

In this paper we focus on the Capacitated Vehicle Routing Problem (CVRP).
It can be defined as follows. Let G = (V, E) be a complete undirected graph
consisting of n + 1 nodes, and a set of edges E with non-negative weights and
with associated travel times. Let one of the nodes be designated as the depot.
With each node i, apart from the depot, is associated a demand qi that can be
a delivery from or a pickup to the depot. The problem is to minimize the total
travel distance of a routing plan such that the total demand of any route does not
exceed a vehicle capacity Q (the capacity constraint), the duration of any route
does not exceed an upper limit L (the route duration limit), each route must
start and end at the depot, and each customer must be served by exactly once
by one vehicle. Note that the above described VRP with the route duration limit
is often separated from CVRP and called distance-constrained VRP (DVRP).
In this paper, the DVRP is not considered.

The VRP is a NP-hard problem which makes it difficult to solve it to op-
timality. In practice, heuristic or metaheuristic solution methods are often the
only option. For more details, see e.g. Laporte and Semet [10], Gendreau et al.
[5], and Cordeau et al. [4].

In broad terms, the actual search in almost all known heuristic and meta-
heuristic solution methods is based on various local search procedures and often

J. van Hemert and C. Cotta (Eds.): EvoCOP 2008, LNCS 4972, pp. 48–60, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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the local search is clearly the most time consuming part of the algorithms. Be-
cause of this, it is crucial that strategies for efficient implementation and for
speeding up the local searches are developed and tested. An obvious approach
is to forbid moves that apparently seem to degenerate the current solution.

The main contribution of this paper is to examine five different approaches
that are used to rule out non-improving local search moves and to demonstrate
that significant speedups can be gained without worsening the solution quality.
The five limitation approaches are combined with a composite of three stan-
dard local search neighborhoods and implemented in a recent powerful memetic
algorithm by Nagata [16]. Moreover, 12 new best solutions are found on stan-
dard benchmark problems of Golden at el. [6] and Taillard [19] in reasonable
computation time.

Memetic algorithms (MAs) [15] have recently received a lot of attention due to
their good performance in solving various optimization problems. Briefly speak-
ing, MAs are hybrid Evolutionary Algorithms (EAs) that combine the global
and local search by using an EA to perform exploration while the local search
method performs exploitation. More precisely, local searches are usually applied
to solutions generated by recombination and mutation operators. Typically, the
local search is the most time consuming part of MAs. For example, in the MA
applied here, 80 – 90 % of the computation time is spent on the local search
without the limitation approaches.

The remainder of this paper is organized as follows. In Section 2 we describe
the main local search framework, the applied local search procedures and the
suggested limitation strategies. Section 3 details the MA and experimental re-
sults are given in Section 4. Conclusions are presented in Section 5.

2 The Search Strategy

2.1 The Framework of the Local Search

A local search framework and strategies for limiting the local search are illus-
trated in Figure 1. Here these strategies are applied to a MA but they could be
combined also e.g. with other metaheuristics.

In procedure Local-Search(s), List represents a set of customers considered
by a composite local search. The basic idea is to limit the local search to a set
of customers in the List during the whole search process. The List is initialized
by a user-defined limitation strategy (line 1).

For each customer v ∈ List, an improving move is searched in a neighborhood
N (v, s) (line 5). Here, N (v, s) is defined as a set of moves around v (see Section
2.2). If an improving move is found, the current solution is updated (line 7) and
the customers associated with the improving move are optionally added to the
List (line 8). Correspondingly, in case improvement is not found, customer v is
optionally deleted from the List (line 11). The updating of the List depends on
the applied limitation strategy.
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Six different strategies for limiting the local search are summarized in Figure 1.
The strategy FUL in the figure does not limit the local search and is used as a
baseline for comparisons. The details are described in Section 2.3.

Procedure Local-Search(s)
begin
1 : Initialize List using a user-defined strategy;
2 : Set List in random order;
3 : for i := 1 to |List| do
4 : v := List[ i ];
5 : Search for an improving move in N (v, s);
6 : if an improving move s′ is found then
7 : s := s′;
8 : Add the customers associated with the improving move to List; (Update)
9 : goto line 2;
10: else
11: Remove v from List; (Update)
12: end if
13: end for
14: return s;
end

Strategy Initialize List Update

Full search (FUL) All customers No

Don’t-look bids (DLB) All customers Yes

Forbidding moves of All customers No
common edges (FCE) Note: All moves changing any common edges are forbidden in N (v, s).

Limiting moves to new
edges (LNE)

A set of customers consisting of endpoints of the new
edges (ECB ∪ ECN )

No

Limiting moves to new
routes (LNR)

A set of customers consisting of customers in the new
routes (routes including the new edges)

No

LNR with DLB
(LNRD)

A set of customers consisting of customers in the new
routes (routes including the new edges)

Yes

Fig. 1. Local search framework and limitation strategies

2.2 The Local Search Neighborhood

The local search is based here on three standard local search neighborhoods: 2-
opt, insertion, and swap. These three local search procedures are always applied
together with the first-accept strategy and in random order, forming a composite
local search.

Moreover, the neighborhoods is restricted to the moves which are defined
within geographically close customers only. To be more precise, given a current
solution s and a customer node v, the three neighborhoods are redefined as
described below. In the definition, w denotes other customer nodes which are
close to v, meaning that w must be selected from a set of customers that are
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among the Nnear closest customers with respect to v where Nnear is a user-
defined parameter. Note that w may or may not belong to the same route with
v with two exceptions; v and w must belong to different routes in the second and
third moves in 2-opt neighborhood. v− (w−) and v+ (w+) denote a predecessor
and a successor of v (w), which may be the depot or a customer. (i, j) denotes
an edge between two customers, i and j. The four neighborhoods listed below
are defined in such a way that an edge (v, w) must be included after the moves.

We define N (v, s) as a composite of the following four neighborhoods.

2-opt(v, s)
- Remove (v, v−) and (w, w−), and add (v, w) and (v−, w−).
- Remove (v, v−) and (w, w+), and add (v, w) and (v−, w+).
- Remove (v, v+) and (w, w−), and add (v, w) and (v+, w−).
- Remove (v, v+) and (w, w+), and add (v, w) and (v+, w+).

(1,0)-Interchange(v, s)
- Insert v between w and w−, and link v− and v+.
- Insert v between w and w+, and link v− and v+.

(0,1)-Interchange(v, s)
- Insert w between v and v−, and link w− and w+.
- Insert w between v and v+, and link w− and w+.

(1,1)-Interchange(v, s)
- Insert v between w and (w−)−, and insert w− between v− and v+.
- Insert v between w and (w+)+, and insert w+ between v− and v+.

2.3 The Suggested Limitation Strategies

In this section we describe in detail the applied limitation strategies. The im-
portant idea is limiting the local search around the elements that are changed
from one of parents by the crossover or any other procedures. This idea is similar
to the technique used in the iterated local search algorithm [7] where the local
search is limited around the elements that are changed by the perturbation, but
it has never been applied to MAs.

First, we define some notations. In general, a crossover operator (sometimes
together with a mutation (or any other)) generates offspring by combining fun-
damental elements from selected parents . When VRPs are considered, one pos-
sibility is to employ the edge as an element. Figure 2 illustrates an example of
application of a crossover. Let A and B be a pair of parents to be combined by a
crossover and mutation (or any other), and let C be a child. Let EA, EB and EC

be sets of edges consisting of A, B, and C, respectively. Now, EC is separated
into four disjoint sets: ECS , ECA, ECB, and ECN . ECS is defined as a set of
edges that exist in both of EA and EB. ECN is defined as a set of edges that
do not exist in neither EA nor EB. ECA (ECB) is defined as a set of edges that
exist only in EA (EB).

Limiting moves to new edges. The basic idea of this strategy is limiting the
composite local search to the neighborhood of the edges moved by the crossover
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Parent A: EA Parent B: EB

ECS

ECN

ECB

ECA 

Child C: EC

Fig. 2. Application of a crossover and mutation (or any other) in VRPs

and mutation (or other procedures). Key concept of this strategy is considering
EC to be generated from EA by replacing some edges with ECB ∪ ECN . More
precisely, the List is initialized by a set of customers consisting of endpoints of
the edges belonging to ECB ∪ ECN in the initialization step. See Figure 2 for
example, the List is initialized by 12 customers.

Limiting moves to new routes. This strategy is similar to the previous one.
The basic idea of this strategy is limiting the composite local search to the
neighborhood of the new routes (routes including at least one edge belonging
to ECB ∪ ECN ) generated by the crossover and mutation (or other procedures).
More precisely, the List is initialized by a set of customers consisting of the
customers in the new route in the initialization step. See Figure 2 for example,
there are three new routes.

Forbidding moves of common edges. The basic idea is forbidding moves
related to common edges among the parent solutions (or e.g. in a population
or pool of solutions). The idea is motivated by the ’big valley’ structure [9],
i.e., solution features that appear frequently in the population have relatively
high probability of belonging to the optimal solution. This strategy was applied
to MAs for solving TSP [11], QAP [12], and CVRP [8]. However, Kubiak [8]
reported that there was no significant improvement in the computation time on
the CVRP. We test this strategy for comparison. This strategy is incorporated
to the composite local search by directly forbidding the moves which change any
common edges belonging to ECS .

Don’t-look bids strategy. The concept of don’t-look bits was originally devel-
oped for speeding up local searches in the TSP [2]. This idea can be straight-
forwardly incorporated to the framework of the local search as follows: If an
improving move is not found in N (s, v), v is removed from the List. Corre-
spondingly, in case improvement is found, the customers associated with the
improving move (endpoints of the moved edges) are added to the List (if they
are not already included).
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3 The Applied Memetic Algorithm

In this section we briefly outline the main ideas of the applied MA. For more
details, we refer the reader to [16].

In short, the proposed MA is based on the EAX crossover, the above described
standard local search neighborhoods and allowance of infeasible intermediate
solutions during the search.

In the beginning, each customer is served by a separate route, as in the well-
known savings heuristic. Then the composite local search, described in Section
2.2, is applied to routes to improve the solution. Here also moves that violate
the capacity constraint are allowed during the local search. This procedure is
repeated until a defined population size (Npop) is obtained.

The selection of parents is done randomly by putting the population members
to random order in the beginning of each generation and selecting the parents
directly according to this order. Note that Npop pair of parents are mated for each
generation. For each pair of parents, A and B, a defined number (Nch) of children
(offspring) solutions are generated with the EAX crossover. If the generated
offspring violates the vehicle capacity constraint, an attempt is made to eliminate
the violation by a modification procedure. Briefly speaking, the modification
procedure equals the composite local search where a penalty function is defined
to deal with the overcapacity.

The feasible offspring solutions are further locally optimized using the com-
posite local search. If the best feasible offspring found has a smaller total distance
than A, it replaces A. No separate procedure is applied. The search is stopped
when no more improvements have been found for the last Ng generations.

The important features of the EAX and modification procedure can be sum-
marized as follows by using the notations defined in Section 2.3 : (i) Most of the
offspring edges belong to EA ∪ EB (usually more than 95 %). (ii) Most of the
common edges among the parent solutions (EA ∩EB) are inherited to offspring.
(iii) New edges (ECN ) created for the offspring tend to be short. (iv) Offspring
are generated from parent A by replacing a relatively small number of geograph-
ically close edges (ECB ∪ECN ). This approach was motivated by the observation
that geographically scattered edge exchanges often destroy important features
of good solutions.

In our observation, 80 – 90 % of the computation time is spent on the com-
posite local search applied after the EAX and modification procedures. The
proposed limitation strategies are applied to this composite local search.

4 Experimental Results

A computational experiment has been conducted to analyze the performance of
the proposed strategies. In this section, we describe the experimental setting and
analyze the effect of the proposed approaches. Finally, we present comparative
analysis to other recent metaheuristics that have shown the best performance.
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4.1 Experimental Setting

The proposed limitation strategies are applied to the composite local search in
the MA by Nagata [16] as described above. The optimization parameter values
of the MA are same as those of the original MA; Npop = 100, Nch = 30, Ng = 50.
Nnear (see Section 2.2) is set to 10 if v− (and v+) is not the depot and otherwise
30. This strategy is motivated by the observation that edges incident to the
depot are often longer than other edges in good routing plans.

The computational tests were carried out with the standard CVRP bench-
marks. The 14 classical benchmark problems of Christofides et al. [3] (C1–C14)
consist of 50 – 199 customers, the 20 large scale benchmark problems of Golden et
al. [6] (G1–G20) consist of 200 – 483 customers, and the 13 benchmark problems
of Taillard [19] (T75a–T385) consist of 75 – 385 customers. Problems, C6–C10,
C13–C14, and G1–G8, including the route duration constraint, are not considered
because this constraint is not supported by the MA used here.

For each problem, the MAs were executed 10 times. The MAs were imple-
mented in C++ and executed with Xeon 3.2 GHz single processor computers.

4.2 Analysis of the Limitation Strategies

The analysis of the limitation strategies is executed on the benchmarks of Golden
et al. Table 1 lists the detailed results. In the table, the results of the MA with
the limitation configurations are compared with each other and also with the
original MA. The first column lists the names of the instances, the number of
customers, and the best-known solutions. Most of the best-known solutions (ex-
cept for G20) were found by the previous MA. The first row lists the examined
configurations. The successive rows show the best travel distance (top), the aver-
age travel distance (middle), and average computation time in seconds (bottom).
New best solutions are marked with boldface. The last row presents the averaged
values over the all instances. ’Dev. best’ and ’Dev. aver.’ describe the deviation
of the best results and the average results, respectively, from the best-known
solutions in percentage. ’Ave. CPU’ gives the average CPU time in seconds.

The Table 2 summarizes the relative differences from configuration FUL (with
no limitations). In the table, Rel. dev. shows averaged relative deviation of the
solution qualities. For example, Rel. dev. for configuration ’A’ is calculated by

1
|Problems| ·

∑
i∈problems

averageA
i −averageF UL

i

averageF UL
i

× 100, where averageA
i refers to the

average total distance of problem i obtained by configuration ’A’. Rel. time
shows the average relative CPU time in percentage in a similar way.

As shown in the tables, the examined five limitation strategies, especially
LNE, LNR, and LNRD, reduce the computation time of the MA significantly.
Moreover, the deterioration of the solution quality by DLB, LNR, and LNRD is
not observed or very small (≤ 0.007 %). FCE and LNE slightly deteriorate the
solution quality (≥ 0.07 %). LNRD appears to be the best strategy, reducing 76
% of the computation time without worsening the solution quality.

We should also refer to the improvement of the MA with configuration FUL
over the previous MA. The time reduction is caused by the idea that two values
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Table 1. Experimental results for the benchmark problems of Golden et al. [6]

Problem Limitation strategies Prev. MA
best FUL DLB FCE LNE LNR LNRD

G9 best 581.02 580.72 581.20 580.02 580.40 580.48 580.60
(255) average 581.77 581.72 582.27 582.19 581.88 581.63 582.34
580.60 time (s) 1079 730 580 261 477 314 1552

G10 best 738.44 738.81 740.22 738.56 738.80 738.73 738.92
(323) average 739.72 739.92 740.95 740.24 739.71 739.74 740.91
738.92 time (s) 1621 955 900 533 720 582 2508

G11 best 914.82 914.24 915.15 915.63 914.03 914.75 917.17
(399) average 916.28 915.94 916.63 916.66 915.48 915.64 918.19
917.17 time (s) 2456 1733 1498 656 1098 794 3835

G12 best 1105.21 1104.84 1107.09 1105.70 1105.90 1106.33 1108.48
(483) average 1107.89 1107.66 1109.67 1109.33 1107.80 1107.87 1110.71

1107.19 time (s) 3137 2552 1892 951 1340 1024 6801

G13 best 857.19 858.14 857.19 857.19 857.19 857.19 857.19
(252) average 857.94 858.99 859.47 858.54 858.42 858.69 858.84
857.19 time (s) 978 695 532 268 342 252 1165

G14 best 1080.55 1080.55 1080.55 1080.55 1080.55 1080.55 1080.55
(320) average 1080.83 1080.94 1081.07 1082.18 1081.19 1081.01 1080.93

1080.55 time (s) 1319 915 821 335 464 306 1620

G15 best 1341.40 1342.57 1343.46 1341.72 1341.55 1341.23 1340.24
(396) average 1343.09 1343.74 1345.29 1343.29 1343.47 1343.24 1344.02

1340.24 time (s) 1987 1206 1103 502 590 510 1924

G16 best 1616.55 1619.22 1622.92 1621.19 1619.52 1616.33 1619.93
(480) average 1621.84 1621.32 1624.95 1624.27 1621.82 1621.47 1625.07

1619.93 time (s) 3019 2049 1626 555 824 579 4295

G17 best 707.76 707.76 707.76 707.76 707.76 707.76 707.76
(240) average 707.77 707.78 707.79 707.77 707.76 707.76 707.77
707.76 time (s) 661 447 344 105 145 118 718

G18 best 995.13 995.39 995.62 995.75 995.13 995.39 995.39
(300) average 996.19 996.15 996.41 996.48 996.36 996.01 996.62
995.39 time (s) 1123 885 721 243 304 253 1261

G19 best 1366.16 1366.13 1365.99 1367.05 1366.21 1366.18 1366.14
(360) average 1366.78 1366.51 1367.38 1367.49 1366.65 1366.76 1367.31

1366.14 time (s) 1774 1137 1101 243 299 234 2013

G20 best 1820.16 1820.05 1822.58 1820.88 1821.06 1819.99 1820.54
(420) average 1822.33 1822.37 1824.62 1823.82 1822.68 1822.00 1822.97

1820.09 time (s) 2571 1642 1321 368 424 396 3169

Dev. of best. (%) -0.045 -0.024 0.052 -0.010 -0.031 -0.045 0.012
Dev. of aver. (%) 0.081 0.088 0.181 0.151 0.086 0.078 0.183
Ave. CPU (sec) 1810 1245 1036 418 585 446 2571

Table 2. Relative differences from configuration FUL

FUL DLB FCE LNE LNR LNRD Prev. MA

Rel. dev. (%) 0.000 0.007 0.100 0.070 0.005 -0.003 0.101
Rel. time (%) 100 69 57 23 32 24 134
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Fig. 3. Behaviors of EAX and the composite local search with different configurations

of Nnear are used in the composite local search (see Section 4.1). The improve-
ment in the solution quality is caused by varying the neighborhoods after each
improvement instead of applying the same neighborhood until local minimum.
A more detailed analysis is given in Figure 3 where the results are based on
average output averaged every 10 generations in a run to problem G9.

Figure 3 (a) shows the composition ratio of ECS , ECA, ECB, and ECN in
case of the MA with configuration FUL. As shown in the figure, children are
generated from one parent (parent A) by replacing a relatively small number of
edges; the ratio of ECN + ECB is averagely less than 10 %.

Figure 3 (b) illustrates the number of evaluations per an application of the
composite local search in the different limitation strategies. Here the starting
point is made equal in each generation by applying each local search to the
same solution obtained in the MA with configuration FUL. It appears that large
reductions in the number of evaluations are possible with strategies LNE, LNR
and LNRD because the ratio of ECN +ECB is small, and these make it possible to
reduce the computation time of the corresponding MAs. The computation time
of the MA with configuration FCE seem to be larger in Table 2 than expected
based on the results reported here. This is mainly because of the time needed
for checking the common edges.
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Table 3. Comparisons with other heuristics

Rochat & Tarantilis Mester & Nagata LNRD LNRD time
Prev. Taillard Bräysy aver. best aver. (sec)

Problem best [18] [20] [13] [16]

C3 (100) 826.14 826.14 826.14 826.14 826.14 826.14 826.14 12
C4 (150) 1028.42 1028.42 1028.42 1028.42 1028.51 1028.42 1028.42 31
C5 (199) 1291.29 1291.45 1311.48 1291.29 1293.93 1291.29 1294.67 156
C11 (120) 1042.11 1042.11 1042.11 1042.11 1042.11 1042.11 1042.11 6
C12 (100) 819.56 819.56 819.56 819.56 819.56 819.56 819.56 2

Dev. (%) 0.002 0.22 0.00 0.03 0.00 0.04
Ave. CPU (min) N/A 5.4 7.2 2.4 6.9 0.7
Computer SGI Pentium Penti. IV Xeon Xeon Xeon

100 400 2.8 GHz 3.2 GHz 3.2 GHz 3.2GHz

Tarantilis Pisinger Mester & Nagata LNRD LNRD time
Prev. aver. Bräysy aver. best aver. (sec)

Problem best [20] [17] [13] [16]

G9 (255) 580.60 585.43 590.33 583.39 582.34 580.48 581.63 314
G10 (323) 738.92 746.56 751.36 741.56 740.91 738.73 739.74 582
G11 (399) 917.17 923.17 926.57 918.45 918.19 914.75 915.64 794
G12 (483) 1107.19 1130.40 1125.22 1107.19 1110.71 1106.33 1107.87 1024
G13 (252) 857.19 865.01 874.24 859.11 858.84 857.19 858.69 252
G14 (320) 1080.55 1086.07 1103.53 1081.31 1080.93 1080.55 1081.01 306
G15 (396) 1340.24 1353.91 1366.23 1345.23 1344.02 1341.23 1343.24 510
G16 (480) 1619.93 1634.74 1645.67 1622.69 1625.07 1616.33 1621.47 579
G17 (240) 707.76 708.74 710.59 707.79 707.77 707.76 707.76 118
G18 (300) 995.39 1006.90 1007.84 998.73 996.62 995.39 996.01 253
G19 (360) 1366.14 1371.01 1377.88 1366.86 1367.31 1366.18 1366.76 234
G20 (420) 1820.09 1837.67 1834.70 1820.09 1822.97 1819.99 1822.00 396

Dev. (%) 1.51 2.42 0.32 0.31 -0.07 0.13
Ave. CPU (min) 45.5 8.4 4.5 41.1 74.7 7.5
Computer Pentium Penti. VI Penti. VI Xeon Xeon Xeon

400 3.0 GHz 2.8 GHz 3.2GHz 3.2GHz 3.2GHz

Rochat & Mester & Alba LNRD LNRD time
Prev. Taillard Bräysy et al. best aver. (sec)

Problem best [18] [14] [1]

T100a 2041.34 2047.90 2041.34 2047.90 2041.34 2041.34 18
T100b 1939.90 1940.61 1939.90 1940.36 1939.90 1940.37 14
T100c 1406.20 1407.44 1406.20 1411.66 1406.20 1406.20 14
T100d 1581.25 1581.25 1581.25 1584.20 1580.46 1580.46 27
T150a 3055.23 3070.91 3055.23 3056.41 3055.23 3055.23 19
T150b 2727.67 2733.60 2727.67 2732.75 2727.20 2727.35 61
T150c 2341.84 2364.31 2343.11 2364.08 2359.30 2359.61 116
T150d 2645.39 2663.20 2645.40 2654.69 2645.39 2645.46 36
T385 24431.44 24435.50 24855.32 25015.01 24369.13 24384.58 349

Dev. (%) 0.47 0.30 0.80 0.07 0.09
Ave. CPU (min) N/A 28.8 N/A 12.1 1.2
Computer SGI Penti. IV Penti. IV Xeon Xeon

100 2.0GHz 2.8 GHz 3.2GHz 3.2GHz
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Figure 3 (c) shows the gains, i.e., the amount of improvement in total travel
distance by the composite local search with the different strategies. As shown
in the figure, there is no difference between the results of FUL, DLB, LNR,
and, LNRD whereas FCE and LNE are worse than the others. These results are
consistent with the solution qualities in Table 2.

4.3 Comparisons with Other Heuristics

The MA with the best limitation strategy, LNRD, is compared with the other
recent CVRP heuristics using three standard benchmark sets. The three tables
in Table 3 show the comparative results on the benchmarks of Christofides et al.,
Golden et al., and Taillard, respectively where the heuristics that have shown
the best performance are selected in each benchmark set. Please note that some
”easy” benchmarks (n < 100) are omitted due to lack of space.

In the first row of the tables, the comparative heuristics are represented by
the author names (’aver.’ means that averaged results are listed in the column).
Note that the previous MA is represented by ’Nagata’ and was not applied to
the benchmark of Taillard. The two first columns give the names of the instances
together with the number of customers and the best-known solutions. The last
three columns gives the best travel distance over ten runs, the average travel
distance, and the average computation time in seconds, respectively, related
to the proposed method. New best solutions are marked with boldface. The
last three rows give the average deviation from the best-known solutions in
percentage, type and speed in MHz of the computers used, and the average
CPU time in minutes.

According to Table 3, the solution quality of the MA with configuration LNRD
is better than those of the other heuristics. Mester and Bräsys’s method [13] in
benchmark of Christofides et al. is the only exception. Moreover, the proposed
MA found 12 new best solutions and 14 previous best solutions in the total of
26 benchmark problems.

Even allowing for the differences between the computers, the computation
time of ’LNRD aver.’ seems to be shorter or not so longer than those of other
heuristics. This is important because the MA with configuration LNRD does not
suffer from heavy computation time contrary to the popular opinion that MAs
needs heavy computation time.

5 Conclusion

In this paper we have examined five different strategies for limiting the local
search neighborhood in the context of capacitated vehicle routing problem. The
suggested limitation strategies were applied to a composite of standard VRP
neighborhoods and implemented in a powerful memetic algorithm. The experi-
mental tests were carried out with well-known benchmark problems and it was
shown that the considered limitation approaches can significantly reduce the
computation time and at the same time maintain or even improve the solution
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quality. 12 new best-known solutions to benchmarks of Golden et al. and Tillard
are also reported.
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Abstract. The problem of finding the broadcast scheme with minimum
power consumption in a wireless ad-hoc network is NP-hard. This work
presents a new hybrid algorithm to solve this problem by combining evo-
lutionary approaches with local search. The algorithm is benchmarked
by solving instances with 20 and 50 nodes where results are compared to
either optimum or best results found by an IP solver. For these instances,
the proposed algorithm was able to find optimal and near-optimal solu-
tions and outperform previous heuristics.

1 Introduction

Wireless ad-hoc networks have become very popular, as they are easily set up
and do not need a wired backbone structure [1]. Nodes in such networks usually
carry their own power supply, which makes the wireless ad-hoc network a good
choice for a first responders infrastructure, or even as the main communications
infrastructure in regions where installing a wired infrastructure would be too
expensive or time consuming.

The communication in such ad-hoc networks can be performed either directly
between two nodes, or by relaying the messages via intermediate nodes. Each
node is able to adjust its transmission power based on the distance to the receiver,
which allows to keep the interference between different simultaneous communica-
tions low, and also helps saving energy. Using omnidirectional antennas further
brings the advantage of simple local broadcasts, as all nodes within the transmis-
sion range can receive the message without additional cost at the sender. This
property of the wireless transmission is often referred to as the wireless multicast
advantage. Because of the limited battery power of each node, it is crucial to find
communication topologies that minimize the energy consumption.

A special communication pattern is the one-to-all communication (broadcast).
Here, one source node has to distribute information to all other nodes. Broadcast
routing in wireless ad-hoc networks differs largely from routing in wired networks.
In wireless settings such a broadcast can be achieved by simply adjusting the
transmission power of the source to reach all nodes in the ad-hoc network in one
hop. However, because of the physical laws describing the power consumption as
a function of the distance, the total energy consumption can often be reduced
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by using intermediate nodes [2]. E. g., if the power consumption is proportional
to the squared distance (this is the case when there are no obstacles), it is twice
as expensive to send a message directly to the destination, instead of sending it
to a node half the way between sender and destination and have this node relay
the message to the final node.

In this work, we are searching for the broadcast tree that minimizes the total
energy consumption. This problem is known as the Minimum Energy Broadcast
(MEB) problem [3]. We present a new Evolutionary Local Search heuristic for the
MEB problem. We also use Mixed Integer Programming (MIP) to compute lower
bounds or optimal solutions and compare the solution quality of the proposed
heuristic against these bounds as well as other heuristics.

This paper is structured as follows. In the remainder of this section we give a
formal definition of the MEB problem and summarize related work. In Section 2
we present our heuristic, and then give results of experiments carried out with
this heuristic in Section 3. Section 4 summarizes our findings and gives an outline
for future research.

1.1 Minimum Energy Broadcast

The Minimum Energy Broadcast (MEB) problem is an NP-hard optimization
problem [4,5]. It is also known as Minimum Power Broadcast (MPB) or Minimum
Energy Consumption Broadcast Subgraph (MECBS). The MEB problem can be
defined as the problem of finding the broadcast tree T = (V, ET ) (a directed
spanning tree, defined by its parent function pT : V → V ) rooted at a source
node s ∈ V in an ad-hoc wireless network G = (V, E, d), that minimizes the
necessary total transmission power c(T ) to reach all nodes of the network:

c(T ) =
∑
i∈V

max
j:pT (j)=i

d(i, j)α

︸ ︷︷ ︸
transmission power of node i

Here, the distance function d : E → R
+ refers to the Euclidean distance and

the constant α is the distance-power gradient which may vary from 1 to more
than 6 depending on the environment [6]. Each node is required to send to its
farthest child, all other children are then implicitly covered by this transmission.
The leaves of the tree T do not send to other nodes and thus do not contribute
to the total cost.

1.2 Related Work

One of the first approaches for the MEB problem is the Broadcast Incremen-
tal Power algorithm (BIP) by Wieselthier et al . [3]. This heuristic builds the
broadcast tree in a way that resembles Prim’s algorithm for building Minimum
Spanning Trees (MST). While Prim’s algorithm is an exact algorithm for the
MST, BIP is an heuristic and does not necessarily find an optimal solution for
the MEB problem. The MST itself can also be used as a heuristic solution for the
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MEB problem, but BIP explicitly exploits the wireless multicast advantage and
thus produces solutions with lower costs than the corresponding MST solutions.
The approximation ratio of MST is known to be 6 for the case of α ≥ 2 [6],
whereas for α < 2 the MST does not provide a constant approximation ratio [4].
The approximation ratio of BIP for α = 2 is shown to be between 13/3 and 6 [7].

The BIP heuristic can be further improved by a local search, e. g. r-shrink [8].
Here, the transmission power for one node is reduced by r steps, cutting off r
nodes. These nodes will be assigned to other nodes, which increases the latter
nodes’ transmission power. If the total cost is not reduced, this change is re-
jected, otherwise it is accepted and the local search is repeated. Experiments
have shown that BIP solutions can be improved considerably. Another improv-
ing heuristic is called Embedded Wireless Multicast Advantage (EWMA) [5].
Here, the transmission power of a node is increased, such that other nodes can
be switched off completely. This can be thought of as the opposite of the r-shrink
heuristic.

Several Mixed Integer Programming formulations (MIP) have been presented
to compute optimal solutions [9,10]. While both approaches are based on a net-
work flow model, the MIP from [10] uses an incremental mechanism over the
transmission power variables, and is said to give better linear relaxations.

A similar heuristic as ours can be found in [11]. The authors present an Iter-
ated Local Search heuristic which is based on an edge exchange neighbourhood
perturbation and the Largest Expanding Sweep Search (LESS, [12]), an improved
local search based on EWMA. This heuristic differs from our heuristic as it uses
a shrinking operation as mutation and an increasing operation as local search,
whereas we propose the opposite. As a result, the broadcast tree in [11] is broken
up and repaired in each step of their local search, whereas our heuristic main-
tains a feasible broadcast tree at all times. Although the idea of increasing the
transmission power in the local search is counterintuitive, the authors achieved
good results using this heuristic.

A more detailed survey covering these and other heuristics as well as exact
algorithms can be found in [13]. This survey does not include a Nested Parti-
tioning Algorithm, which has been presented recently, and which promises good
results and time complexity [14]. This algorithm uses the r-shrink local search
and a randomized BIP to improve the quality of the random samples for the
Nested Partitioning. Since the test instances used in [14] were made publicly
available, other heuristics can be compared directly.

2 Evolutionary Local Search

The MEB Heuristic presented here is based on evolutionary algorithms and local
search [15]. It operates on a global view of the wireless ad-hoc network. The
general outline of the algorithm is shown in Fig. 1. The heuristic is quite similar
to iterated local search [16], but uses more than one offspring solution in each
generation.
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Initialization

Local Search

stop?

yes

Mutationno

ar ← Initialization()
ar ← LocalSearch(ar)
β ← n
while β ≥ 1 do

for i = 1 . . . λ do
ari ← Mutation(β, ar)
ari ← LocalSearch(ari)

end for
min ← argmin

i
{Z(ari)}

if Z(armin) < Z(ar) then
ar ← armin

else
β ← 0.9 · β

end if
end while

Fig. 1. General overview of the Evolutionary Local Search

Representation. As can be seen from the survey [13] and also from the in-
dividual heuristics, most of the previous local search heuristics can be split in
two groups based on their neighbourhood structure: Some are based on a tree
representation, whereas others are based on the range assignments. A tree repre-
sentation allows the use of simple tree operators, whereas the range assignment
representation enables an easier calculation of the total cost. For our Evolution-
ary Local Search, we chose a combination of these two representations, combining
their advantages.

A solution is represented by the assignment vector a and the range vector r.
For each node i the value a(i) gives the parent of i, while r(i) holds the farthest
possible child of i, or i itself if it does not transmit to another node. Both vectors
are combined to a single vector ar.

Initialization. The initial solution is created by BIP [3]. Using BIP bears the
advantage that there is an upper bound for the solutions of the Evolutionary
Local Search heuristic for α = 2, since in this case BIP already gives a 6-
approximation to the MEB problem [6].

Local Search. After each step of the Evolutionary Algorithm a local search is
applied to further improve the current solution. We use a modified r-shrink [8].
No levels were computed, instead we apply the local search step to all nodes in
the order of their ID. Also, when decreasing the power level by more than one
step, we do not restrict this decrease operation to one single node. Instead, a
step of the modified 2-shrink may consist of two nodes decreasing their power
level by one step each. This way, the local search becomes more complex but
yields better results.

These local search steps are performed for each node i. The local search is
restarted whenever an improving step was found and applied. The local search
is thus repeated until no improvement for any node i can be found, i. e. a local
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procedure LS(r)
if r > 0 then

repeat
for each transmitting node i do

x ← farthest child of i
Reduce transmitting range of i by one step, cutting off x
j ← best foster parent for x
Increase transmitting range of j to cover x
if cost is higher then

LS(r − 1)
end if
if cost is still higher then

Undo the move and all moves made by the recursive call
end if

end for
until no improvement found

end if

Fig. 2. Modified r-shrink

optimum has been reached. The pseudocode for the modified r-shrink is shown
in Fig. 2.

Mutation. Since local search alone will get stuck in local optima, we use mu-
tation to continue the search. Mutation is done by increasing the transmission
power of randomly chosen nodes to random levels. The ‘gain’ of such a move
can be calculated as the sum of the power level changes. The mutation changes
only the range vector, but not the assignment vector. In these intermediate so-
lutions, the farthest possible children of some nodes are often not assigned to
these nodes. The local search can later rearrange other nodes to such nodes and
thus make use of the increased ranges.

Several mutation steps are applied in each round. The number of mutations
is adapted to the success rate. The algorithm starts with β = n mutations. If
no better solution is found in one generation, the mutation rate β is reduced
by 10 %. This way, the algorithm can adapt to the best mutation rate for the
individual problem and for the phase of the search. It is our experience that it
is favourable to search the whole search space in the beginning, but narrow the
search over time, thus gradually shifting from exploration to exploitation.

Population. Our heuristic uses a population of only one individual. In this
paper, we do not use recombination. Using mutation and local search, λ offspring
solutions are created. The best solution is used as the next generation only if it
yielded an improvement. This follows a (1 + λ)-ES selection paradigm. If there
was no improvement in these λ children, the mutation rate β is reduced as
described before.
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Stopping criterion. The heuristic is stopped when the mutation rate drops
below β < 1. This value ensures that the neighbourhood of the best solution
found by the heuristic is searched especially thoroughly. However, in the smaller
instances the heuristic often finds the optimum in the first or second generation.

3 Experiments

We used the same test sets as in [14]. Each set contains 30 instances, where n
nodes are randomly located in an area of 1000×1000m2. The Euclidean distance
was used and the distance-power gradient was set to α = 2. The first set uses
n = 20, the second n = 50.

The commercial MIP solver CPlex 10.1 [17] was used together with the MIP
formulation from [10] to obtain optimal solutions for the problem instances.
Since the MEB problem is NP-hard, CPlex was only able to provide optimal
solutions for the 20 nodes problems and about half of the 50 nodes problems.
Depending on the individual problem, CPlex took up to four days to find and
prove the optimal solution. For the remaining problems, CPlex was stopped after
it produced a gap of less than 10%. Problem p50.07 was the hardest problem
for CPlex, as it took about twenty days do arrive at this gap.

In the experiments, we set the number of offspring solutions to λ = 500.
These settings have proven to be a good choice in preliminary experiments.
Unless stated otherwise, we used r = 1 for the local search. Each experiment
was repeated 30 times and average values are used for the following discussion.
Calculation times refer to the CPU time on a 2.8GHz Pentium IV running
Linux 2.6; the algorithm was implemented in C.

As a comparison, we used our own implementation of the Iterated Local
Search [11] (ILS). Here, we started from the BIP solution, used the suggested
local search (LESS) and mutation operators (edge exchange), but relaxed the
termination criterion. Instead of letting the ILS run for only 60 seconds, we
allowed it to reach 20 000 iterations. We have not used any of the suggested
speed-ups, since we are not interested in the CPU time of the ILS but only in
the quality of the solutions.

We also compare our results to the results of the Nested Partitioning [14], and
the results that can be achieved by applying r-shrink to BIP solutions.

3.1 Results

The results for the 20 nodes problems are shown in Table 1. The algorithm was
able to find the optimum in almost every run. Also, the non-optimal solutions
were very close to the optimum, with average excess of less than one percent.

Comparing the results of the algorithm against the results obtained by apply-
ing r-shrink to the BIP solution, which can be seen as the first generation of an
Evolutionary Local Search, shows how much can be gained by the evolutionary
approach. In some of the instances, BIP+r-shrink already found the optimal
solution, but the average of BIP+r-shrink above the optimum was 11.63 %. The
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Table 1. Results for the 20 nodes problems using r = 1. The average excess over the
optimal solution is shown for the proposed ELS, the NP from [14], the ILS from [11],
and BIP+r-shrink.

Instance Optimum ELS NP ILS BIP+r-shrink
Excess found time Excess found time Excess found Excess

p20.00 407 250.81 0.05% 26/30 0.27 s – 30/30 0.30 s – 30/30 14.90%
p20.01 446 905.52 – 30/30 0.42 s – 30/30 0.36 s 7.09% 5/30 –
p20.02 335 102.42 – 30/30 0.53 s – 30/30 0.41 s 3.52% 1/30 –
p20.03 488 344.90 – 30/30 0.67 s 0.16% 27/30 0.46 s – 30/30 4.79%
p20.04 516 117.75 – 30/30 0.45 s – 30/30 0.43 s 0.40% 0/30 19.35%
p20.05 300 869.14 – 30/30 0.41 s – 30/30 0.35 s 3.19% 0/30 31.06%
p20.06 250 553.15 1.57% 17/30 0.24 s – 30/30 0.18 s – 30/30 32.91%
p20.07 347 454.08 – 30/30 0.49 s – 30/30 0.31 s – 30/30 7.25%
p20.08 390 795.34 – 30/30 0.68 s – 30/30 0.46 s 0.37% 26/30 –
p20.09 447 659.11 0.004% 27/30 0.60 s – 30/30 0.41 s 0.64% 0/30 14.82%

p20.10 316 734.39 – 30/30 0.48 s – 30/30 0.40 s – 30/30 4.77%
p20.11 289 200.92 – 30/30 0.30 s – 30/30 0.24 s 1.93% 0/30 6.35%
p20.12 314 511.98 10.62% 1/30 0.50 s – 30/30 0.20 s – 30/30 22.00%
p20.13 346 234.51 0.25% 28/30 0.36 s – 30/30 0.26 s – 30/30 26.85%
p20.14 301 426.68 – 30/30 0.63 s 0.38% 17/30 0.43 s 4.71% 0/30 –
p20.15 457 467.93 – 30/30 0.25 s – 30/30 0.24 s 1.74% 0/30 20.57%
p20.16 484 437.68 – 30/30 0.67 s 1.03% 21/30 0.41 s 12.63% 0/30 9.21%
p20.17 380 175.41 – 30/30 0.46 s – 30/30 0.39 s 3.72% 5/30 2.80%
p20.18 320 300.23 – 30/30 0.43 s – 30/30 0.31 s – 30/30 6.48%
p20.19 461 267.52 – 30/30 0.63 s 0.21% 18/30 0.34 s – 30/30 3.06%

p20.20 403 582.74 – 30/30 0.40 s 0.02% 29/30 0.35 s – 30/30 5.39%
p20.21 271 958.28 – 30/30 0.23 s – 30/30 0.19 s – 30/30 –
p20.22 328 659.78 – 30/30 0.22 s – 30/30 0.19 s – 30/30 19.64%
p20.23 326 654.08 – 30/30 0.41 s – 30/30 0.28 s – 30/30 20.61%
p20.24 395 859.67 – 30/30 0.71 s – 30/30 0.42 s 2.08% 0/30 0.76%
p20.25 453 517.28 – 30/30 0.22 s – 30/30 0.21 s – 30/30 19.17%
p20.26 461 547.18 – 30/30 0.39 s – 30/30 0.32 s 0.07% 29/30 –
p20.27 389 057.00 0.23% 24/30 0.40 s – 30/30 0.38 s 1.13% 0/30 29.81%
p20.28 279 251.95 – 30/30 0.32 s – 30/30 0.28 s – 30/30 11.43%
p20.29 299 586.76 – 30/30 0.26 s – 30/30 0.31 s – 30/30 14.86%

avg 0.42% 28.1/30 0.43 s 0.06% 28.7/30 0.33 s 1.44% 18.2/30 11.63%

results of the proposed Evolutionary Local Search were also better than the
results of the ILS, which found the optimum in only about two third of the
runs, and showed an average excess of 1.44 %. It is worth mentioning, that the
ILS sometimes failed to find the optimum when BIP+r-shrink was successful.
Only the Nested Partitioning Algorithm [14] showed better results, it found the
optimum more often for these instances.

Table 2 shows the results for the 50 nodes problems. Optimal solutions are
known only for about half of these instances. For the remaining instances we
use the best solution found by CPlex as a comparison. It can be seen that
these instances, which are harder to solve for CPlex, are not harder for the
Evolutionary Local Search. In many of the cases the Evolutionary Local Search
still found the best known solutions, and in the remaining cases the solutions
found by the heuristic were very close to the best known solutions. On average,
every fourth run of the ELS found an optimum or a best known solution, and
the average excess over the best known or optimal solutions was 2.50 %.

For problems p50.08 and p50.25, the algorithm found the optimum in all
runs. The ELS showed its worst performance on p50.19 in terms of average
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(b) Worst Solution found by ELS

Fig. 3. Optimal and sub-optimal solutions for problem p50.19. The source is node 3,
and transmitting nodes are highlighted.

excess above optimum, although it found the optimum in every third run. In the
remaining runs, it often got stuck in an especially bad local optimum, as shown
in Fig. 3. In this figure, we compare the optimal and the worst solution found by
the ELS for problem p50.19. While in the optimal solution node 3 sends to the
majority of the nodes, this part is given to node 40 in the worst solution.

The Evolutionary Local Search is again competitive as comparisons to other
heuristics show. The BIP+r-shrink solutions are between 6 % and 37 % percent
more expensive than the optimal or best known solutions. We have again used
our implementation of the ILS [11] on these instances. Although the ILS gave
better results on some of the instances, it did not find the optimal or best known
solutions as often as the ELS, also the average excess was higher (3.89 % com-
pared to 2.50 %). Although the mutation operator of the ILS is quite intriguing,
the local search is counterintuitive and sometimes fails to make the right deci-
sions. Comparing the results of our ELS to the Nested Partitioning [14] reveals
that for the larger instances the ELS performed better, resulting in an average
excess of 2.5 % compared to 4 % over the optimum or best known solutions. The
ELS also found the optimal or best known solutions more often, i. e. in every
fourth run as compared to in every sixth run. A stastistical significance test (95%
confidence) reveals that the ELS is superior to the ILS in 13 cases (against NP
also in 13 cases), while it is inferior in 6 cases (against NP in 4 cases).

To further improve the quality of the ELS solutions, we increased the range
of our local search to r = 2. This reduced the average excess to 0.61 %, but
also increased the running times by a factor of 8, as Table 3 shows. Also, the
solutions found by BIP+r-shrink improved slightly with r = 2. With the stronger
local search, the ELS found the optimum in more than half of the runs, and
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clearly outperforms previous heuristics considering the quality of the results. The
significance test (95% confidence) reveals that the ELS with r = 2 is superior
to the ILO in 22 cases (against NP in 24 cases), while it is inferior in two cases
(against NP in one case).

3.2 Fitness Landscape Analysis

For a better understanding of the behaviour of the Evolutionary Local Search,
we analysed the fitness distance correlation (FDC) of the local optima of the used
r-shrink. We created 10 000 random feasible solutions for each problem instance
and started the local search to find local optima. The fitness of the solution
is defined by the cost of this solution, and the distance from the optimum is
measured by the sum of the squared power range differences. The FDC using
r = 1 for the 50 nodes problems lies between 0.70 and 0.86, with an average of
0.79. Using r = 2 it improves slightly to an average of 0.81 (0.68 to 0.87). Using
the LESS local search, the FDC values are slightly worse (average 0.71, from
0.07 to 0.96), which indicates that using r-shrink as a local search operator is a
good choice.

Since the FDC values alone do not always allow a meaningful deduction, we
have also looked at the fitness distance scatter plots [18]. Figure 4 shows the
scatter plots for both local search operators for p50.29. In these plots, the dis-
tance and the cost are normalized to the value of the optimum for the individual
problem. Although the LESS local search gives a higher FDC value, it can be
observed that it produces fewer different local optima, which are far-scattered in
the search space. Most of the local optima for LESS are located some distance
away from the global optimum, but show a low cost. An iterated or evolutionary
local search may get stuck in these local optima. On the other hand, the r-shrink
local search operator produces a large amount of different local optima. Again,
most of these are located near the local optima from LESS, but there is a trail
of local optima leading closer to the global optimum.

Still, in both instances there is a tendency for lower costs when the distance
to the optimum decreases. This correlation can be exploited by the Evolutionary
Local Search, which approaches the global optimum by jumping from one local
optimum to the next one. Also, the results indicate that recombination may
profit from the correlation and thus yield good results.

4 Conclusion

We have presented a new Evolutionary Local Search for the Minimum Energy
Broadcast problem. As local search we used a modified r-shrink, which shows
a higher complexity but also gives better results. The algorithm has shown to
find optimal or near-optimal solutions in short time for the considered test in-
stances. Also, comparisons show that the proposed heuristic outperforms previ-
ous heuristics.
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Fig. 4. FDC scatter plots for p50.29. Distance and cost are normalized to the value of
the optimum for the individual problem.

Future work focusses on the development of a powerful but fast recombination
operator. We are also striving for a distributed algorithm that approximates the
results of the heuristic proposed here.
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Abstract. This paper presents a method of classification rule discovery
based on two multiple objective metaheuristics: a Greedy Randomized
Adaptive Search Procedure with path-relinking (GRASP-PR), and Mul-
tiple Objective Particle Swarm (MOPS). The rules are selected at the
creation rule process following Pareto dominance concepts and forming
unordered classifiers. We compare our results with other well known rule
induction algorithms using the area under the ROC curve. The multi-
objective metaheuristic algorithms results are comparable to the best
known techniques. We are working on different parallel schemes to han-
dle large databases, these aspects will be subject of future works.

1 Introduction

The current information age is characterized by an extraordinary expansion of
data that is being generated and stored in all kinds of human endeavors. A
significant need for techniques and tools, with the ability to intelligently assist
humans in analyzing very large collections of data in a search for useful knowl-
edge exists. In this sense, the area of data mining has received special attention.
Our work deals with one of the main data mining task: classification. The classi-
fication task produces a model based on data. The model can be used to classify
an unseen data item into one of the predefined classes based on its descriptor
attributes. The model is learned in a supervised mode, which provides classified
data (training set) as an entry to the learner.

One of the most used models to represent knowledge in data mining context is
production rules. This is because of their simplicity, intuitive aspect, modularity
and because they can be obtained directly from a dataset [7]. Therefore, rules
induction has been established as a fundamental component of many data mining
systems. Production rules, or rules induction, are formed by a set of rules, where
each rule has the form: if the antecedent then consequent. The antecedent is
a set of descriptor attributes and the consequent is the goal attribute. In this
sense, the task of learning a rule is a combinatorial optimization problem where
� Our special thanks to PRH-22 project of ANP agency for the financial support.
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the complexity grows with the number of descriptor attributes and the number
of examples on the database, furthermore, these examples can have noise (or
disturbed values).

Numerous measures are used for performance evaluation of rules, but all of
them are derived from the contingency table [16]. A contingency table for an
arbitrary rule with antecedent B and consequent H is showed at Table 1. In
Table 1, B denotes the set of instances for which the body of the rule is true,
and B denotes its complement (the set of instances for which the body is false);
similarly for H and H . HB then denotes H ∩B, HB denotes H ∩B, and so on.

Table 1. A contingency table

B B

H n(HB) n(HB) n(H)

H n(HB) n(HB) n(H)

n(B) n(B) N

Where n(X) denote the cardinality of the set X, e.g., n(HB) is the number
of instances for which H is false and B is true (i.e., the number of instances
erroneously covered by the rule). N denotes the total number of instances in the
dataset.

Traditional systems usually use a covered approach where a search procedure
is iteratively called. On each iteration, the search algorithm finds the best rule
and removes all the examples covered by the rule from the dataset. Then, the
process is repeated with the remaining examples [17]. The process continues until
all the examples are covered or some stop criterion is reached. In this way, on each
iteration, a new rule is found. However, this approach has some problems; for
example the remotion of the examples from the dataset at each new discovered
rule causes the over-specialization of the rules after some iteration. This means
that each rule covers few examples. Besides that, the classifier composed by the
learned rules is an ordered list where the interpretation of one rule depends on
the precedent rules. In this way, the interpretation becomes very difficult, mainly
when the number of rules increases [2].

In this work, we propose a different approach based on Multi-objective Meta-
heuristic (MOMH) techniques. MOMH techniques allow to conceive a novel ap-
proach where the properties of the rules can be expressed in different objectives
and then, MOMH algorithm find these rules in a unique run. In this way, MOMH
techniques allow creating classifiers composed by rules with specific properties
exploring Pareto dominance concepts. These rules can be used as an unordered
classifier. Two Metaheuristic algorithms are used and compared here: a Greedy
Randomized Adaptive Search Procedure with path-relinking (GRASP-PR), and
Multiple Objective Particle Swarm (MOPS). The preliminary ideas of the MOPS
algorithm were presented in [4], here we explore more deeply the quality of the
solutions compared to the GRASP-PR algorithm. Two Objectives are chosen for
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both systems: the sensitivity and specificity criteria, defined in equation 1 and
2. Both techniques are applied to different dataset and the results are compared
to traditional systems. Furthermore, the analysis of the coverage of the Pareto
Front of both systems was performed. Both techniques are applied to different
dataset and the results are compared to traditional systems. Furthermore, the
analysis of the coverage of the Pareto Front of both systems was performed.

sensitivity =
n(HB)
n(H)

(1)

specificity =
n(HB)
n(H)

(2)

This paper is organized as follows. The next section describes related works.
Section 3 describes the GRASP-PR Rule Learning Algorithm and Section 4 de-
scribes Multiple Objective Particle Swarm for Rule Discovery Algorithm. Section
5 explains the methodology and results for the experiment made to evaluate the
algorithms. Finally, Section 6 concludes the work.

2 Related Work

Recently, increasing interest has emerged in applying the concept of Pareto-
optimality to machine learning inspired by the successful developments in evo-
lutionary multiobjective optimization. These researches include multiobjective
feature selection, multiobjective model selection in training multilayer percep-
trons, radial-basis-function networks, support vector machines, decision trees
and intelligent systems [12]. In the literature, few works deal with multiobjec-
tive evolutionary algorithms for rule learning among them [11], [6] and [10].
The first work focuses on the rule selection phase; it presents a genetic-based
multiobjective rule selection algorithm to find a smaller rule subset with higher
accuracy than the heuristically extracted rule sets. The algorithm has the ob-
jective to maximize the accuracy, and to minimize the number of rules. In [10],
multiobjective association rules generation and selection with NSGA-II (Non-
Dominated Sorting Genetic Algorithm) are discussed. In [5], a multiobjective
optimization evolutionary algorithm with Pareto concepts is used to discover
interesting classification rules for a target class. It presents an implementation
of NSGA with positive confidence and sensitivity as objectives. This work is ex-
tended in [6] using multiobjective metaheuristics to produce sets of interesting
classification rules. A measure of dissimilarity of rules was introduced to promote
diversity on the population.

Our work focuses in the induction of an unordered classifier where the rule
generation, and the rule selection happens at the same time, so we do not need
to select best rules for the classifier after the generation process. The multiobjec-
tive metaheuristic approaches aim to induce classifiers composed by rules with
specific properties. So, to tackle this purpose we choose GRASP-PR and MOPS
techniques presented at next Sections.
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3 The GRASP-PR Rule Learning Algorithm

Greedy Randomized Adaptive Search Procedure (GRASP) [8] is a meta-heuristic
algorithm for combinatorial optimization. GRASP is a multi-start process where
each iteration consists of two phases: the construction of initial solutions and
the local search. The construction phase builds a feasible solution using a greedy
randomized construction. From these initial solutions the local search phase
explores the neighbourhood until finding a local minimum.

At each iteration of the construction phase, the initial solution is built using
a set of candidate elements. A candidate element is a piece that can be incor-
porated to the partial solution without destroying the feasibility. The candidate
elements are ordered using a function that measures the benefit of the element for
the solution. The best n-candidate elements are selected to be at the Restricted
Candidate List (RCL), where n is a parameter. The GRASP randomly chosen
one element from the RCL to incorporate in the solution. This way, different
solutions are obtained at each iteration, but does not necessarily compromise
the power of the adaptive greedy component of the method [8]. After then, the
candidate elements are updated and the functions are evaluated again.

The second phase, the local search, improves the constructed solutions explor-
ing the neighborhood. These solutions are going to a new refined process through
Path-relinking procedure. Path-relinking was proposed as a search strategy that
explores trajectories connecting elite solutions obtained by tabu search [9]. The
use of path-relinking within a GRASP was first proposed by Laguna and Marti
[15]. Given two solutions, their common elements are kept constant and the
space of solutions spanned by these elements is searched with the aim of finding
a better solution. The path-relinking may be viewed as a strategy that seeks to
incorporate attributes of high quality solutions, by the benefit of these attributes
in the selected moves. The path-relinking can be applied as an intensification
strategy, as a post-optimization step to all pairs of best solutions resulting of
the local search [19].

We use these meta-heuristics to propose the GRASP-PR Rule Learning Al-
gorithm. GRASP-PR Rule learning pseudo-code is presented at Algorithm 1.
The algorithm has two phases: The GRASP phase with the construction of
rules (ConstructGreedyRandomizedSolution) and the local search (LocalSearch)
to improve the solutions. This phase creates a list of rules, called Elite Rules
(EliteRules), that will be processed further in the algorithm with a path-relinking
procedure (path-relinking). The goal of the path-relinking step is to explore in-
termediary solutions between each pair of Elite Rules in order to ensure a good
Pareto Front coverage.

The construction of the rules is based on the RCL. A candidate element
of RCL is one pair of attribute-value. For each possible pair, the algorithm
computes the TP rate and the TN rate and chooses a n% of the best candidates
according to TP rate (or a n% of the best pairs according to TN rate, shift from
one to another). The constructed rule begins with one pair randomly choose
from the RCL. After then, all possible candidates are evaluated and the RCL
is again built. The algorithm randomly selects another pair from the RCL. If
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Algorithm 1. GRASP-PR Rule Learning Algorithm

InputInstance()
procedure grasp()
boolean TPbias = true // true=TP rate as bias; false=TN rate as bias
for i = to maxLoop
Solution = ConstructGreedyRandomizedSolution( TPbias, percentageElements)
localBest = LocalSearch(Solution, TPbias)
UpdateSolution( localBest, EliteRules)
TPbias = not TPbias

endfor
EliteRules = filterGeneric( EliteRules)
return( EliteRules)

end grasp
non dom = InsertParetoFront ( EliteRules )
procedure path-relinking( EliteRules,non dom )
foreach rule1 ∈ EliteRules
foreach rule2 ∈ EliteRules
path (rule1, rule2, non dom )

endforeach
endforeach

return(non dom)

procedure path(rule1, rule2, non dom)
intermediate = rule1

while intermediate �= rule2

foreach attribute ∈ rule2

intermediate.add( attribute)
evaluate( intermediate)
non dom = InsertParetoFront( intermediate )

endforeach
endwhile

return(Pareto)

this additional pair improves the TP rate or the TN rate, the pair is included in
the rule currently examined. Otherwise, the pair is removed from the RCL. The
construction ends when the RCL is empty.

Each rule is improved with the local search procedure. The algorithm ran-
domly selects one attribute or value to replace in the current solution at each
iteration. If the replacement improves the TP rate (or the TN rate), then, the
new rule replaces the current one and the process continues until there is no
improvement. At the end of this phase, a procedure (filterGeneric) checks for
rules more general or specific in the archive before a rule is added to the non-
dominated solutions archive. A rule is more specific than other rule, if it has less
attribute constraints and the same contingency table. Only the more general
rules are kept in the archive.

The second phase applies the path-relinking between the Elite Rules and also
initializes the non-dominated solutions archive (InsertParetoFront). For each two
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rules, the path-relinking creates intermediate rules between them (path). Con-
sidering an initial and a terminal rule, the idea is to replace one pair attribute-
value of the initial rule with a pair attribute-value of the terminal rule, at each
iteration, until the former reaches the latter. Each intermediate rule is analyzed
(evaluate) and if it is non-dominated by any other solution in the Elite Archive, it
is included in that archive. The procedure removes solutions that are dominated
by the new rule from that archive. The non-dominated solutions archive is built
selecting all the non-dominated rules according to sensitivity and specificity.

4 Multiple Objective Particle Swarm

Particle swarm optimization (PSO) is a population based stochastic optimization
technique, inspired by social behavior of bird flocking or fish schooling [13].
PSO shares many similarities with evolutionary computation techniques such as
Genetic Algorithms (GA). The system is initialized with a population solutions
and searches for optima by updating generations. However, unlike GA, PSO
has no evolution operators such as crossover and mutation. In this model, there
is a set of particles, called swarm, that are possible solutions for the problem.
These particles move through an n-dimensional space based on their neighbors’
best positions and on their own best position. For that, on each generation,
the position and velocity of particles are updated, considering the best position
already obtained by the particle and the best global position obtained by all
particles of the swarm. The best particles are found based on the fitness function,
which is the problem’s objective function. Each particle p, at some iteration t,
has a position in Rn, x(t), and a displacement velocity in this space, v(t). It has
also a little memory that contains its best position already fetched, pbest(t), and
the best position, gbest(t), already fetched by particles that p knows, i.e., the
best p(t) of all particles attached to the neighborhood of p(N(p)). It is important
to tell that x(t), v(t), pbest(t) and gbest(t) are n-dimensional vectors.

The algorithm works just like follows. The swarm is initiated at the time
t=0, spreading the particles randomly in the space. After that, the iterative
process initiates. The particle’s velocity and position, on the next iteration, are
calculated by the equations 3 and 4.

−→v (t + 1) = � ∗ −→v (t) + φ1 ∗ (−−−→
pbest(t) − −→x (t)) + φ2 ∗ (−−−→

gbest(t) − −→x (t)) (3)

−→x (t + 1) = −→x (t) + −→v (t + 1) (4)

where φ1 and φ2 , in equation 3, are coefficients that determine the influence of
the particle’s best (pbest(t)) and the particle global best (gbest(t)) on particle’s
velocity, respectively. The coefficient � is the inertia of the particle, i.e., how
much its previous velocity affects the current velocity. After the velocities and
positions of all the particles have been updated, pbest(t+1) and gbest(t+1) are
calculated and it continues to the next iteration or until the execution is ended.
A particle swarm algorithm for the solution of multiobjective problems was pre-
sented in [3]. In MOPSO (Multiple Objective Particle Swarm Optimization), in
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contrast with PSO, there are many fitness functions. Differently from PSO, in
MOPSO there is no global best, but a repository with the non-dominated solu-
tions found. At each generation, the velocity of the particles is updated by the
equation 5.

−→v (t + 1) = � ∗ −→v (t) + φ1 ∗ (−−−→
pbest(t) − −→x (t)) + φ2 ∗ (−→Rh(t) − −→x (t)) (5)

where Rh is a position of a particle of the repository, chosen as a guide. There
are many forms to make this choice [3], in this work, we use the sigma distance
method.

The rule learning algorithm using MOPSO works in the following manner.
Each particle of the swarm represents a single classification-rule for an input
dataset with n attributes. Each attribute, beyond the values that appear in the
base, can accept a ’?’ value. That means, for that rule, this attribute does not
matter for the classification. Thus, for example, for a base with the attributes:
(Sky, Temperature, Humidity, Wind, Play ), being the last one the class at-
tribute, a particle with the position: (sun,?,?,yes,yes), for example, is equivalent
to the rule: IF Sky = Sun AND Wind=Yes THEN Play = Yes.

The codification is conceived by integer numbers related with each attribute
value of a dataset. For example, if we have the base and the position of the
particle above mentioned, each of this values are going to be replaced by a
corresponding integer number, sun=2, ?=0, ?=0, yes=1, yes=2, respectively.
Thus, the vector: (2,0,0,1,2) represents its position on N5 space.

First of all, the particles are spread randomly in the discrete search space
(step 1). This is made by means of roulette where the most frequent values of
the database have greater possibility to be chosen. The probability of the generic
value of each attribute, ’?’, is calculated in function of the number of possible
values for attribute. Thus, the more is the number of values, greater is the prob-
ability of the generic value in the roulette. This restriction avoids creating rules
or particles that are not very specific, generating, for example, rules that cover
few examples. After that, the particles are evaluated in all objectives (step 2).
In our case, we used sensitivity and specificity. By means of the criterion of
Pareto dominance, we put the particles with non-dominated solutions in the
global repository (step 3). The solutions that already will be in the repository,
but turned to be dominated by another solution, must be excluded. Analysing
the repository, the more specific rules are removed and just the more generic
rules are kept (step 4). From that point, we must divide the objective space
between each particle of the repository (step 5). Basically, the particles of the
swarm must choose one nondominated particle of the repository like their global
optimum (in our case, we used a process known as sigma distance). Then, the
velocity and the position of the particles in the space are updated through the
equation 5, using the particles numeric position. After that, again, we evaluate
the particles and divide the objective space between the particles of the repos-
itory, restarting the loop (step 6). The loop stops when it reaches the number
of generations established by the user. We believe that, after some generations,
the best classification-rules for the class, by means of used objectives, will be in
the repository (step 7), the pseudo-code is presented at Algorithm 2.
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Algorithm 2. Rule learning algorithm with MOPSO

1. For each particle i, do:
a. Initialize −→xi with a random solution to the problem
b. Initialize −→vi with a random velocity.
c. Initialize

−−−→
pbesti = −→xi

2. Evaluate particles using fitness functions.
3. Find non-dominated solutions, storing them in the repository.
4. Filtering the repository, keeping the more generic rules.
5. Divide the search space between the solutions of the repository.
6. While not reach a stop criterion:
a. For each particle i of the swarm, do:

1)� = random[0, 0.8]; φ1 = random[0, 4]; φ2 = random[0, 4];
2) −→v (t + 1) = (� ∗ −→v (t) + φ1 ∗ (

−−−→
pbest(t) − −→x (t)) + φ2 ∗ (

−→
Rh(t) − −→x (t)))mod

−→
Ni

Note:
−→
Ni is a vector of the number of possible values to each attribute of the

database. It restricts the particle inside the search space.
3) −→x (t + 1) = (−→x (t) + −→v (t + 1))mod

−→
Ni

4) Evaluate particles. The particle will have one value
for each objective of the problem.

5) Update
−−−→
pbest(t)

b. Update the repository with non-dominated particles.
c. Divide the search space, finding

−→
Rh(t) of the particles.

7. Return Repository

5 Experiments Results

In this work, two different empirical studies were made to evaluate the MOMH
techniques. The first one compares GRASP-PR Rule and MOPS algorithms with
other systems using the area under the ROC curve. The area under the ROC
curve (AUC) is considered a relevant criterion to deal with imbalanced data,
misclassification costs and noisy data. The second empirical study investigates
the quality of the solutions provided by GRASP-PR Rule and MOPS algorithms
based on the concept of Pareto dominance. This Section presents the methodol-
ogy followed in these studies.

5.1 Methodology

GRASP-PR Rule and MOPS algorithms were compared with other traditional
systems with recognized good performance in terms of AUC, we use the re-
sults reported by [17]. There, the algorithms: ROCCER, C4.5, CN2, Ripper and
Slipper were compared. The experiments were done with datasets from UCL
Machine Learning Repository [9], using 10-fold stratified cross-validation and
for all inducers were given the same training and test files. The datasets with
more than two classes were reduced to two-class problems selecting the class
with the lower frequency as positive, and the remaining examples as negative.
Table 2 presents the description of datasets used in the experiments. It shows
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Table 2. Description of datasets used in the experiments

# Data set Att Exa Cl # Data set Att Exa Cl # Data set Att Exa Cl

1 breast 10 683 2 7 haberman 4 306 2 12 new-thyroid 6 215 3
2 bupa 7 345 2 8 heart 14 270 2 13 nursery 9 12960 5
3 ecoli 8 336 8 9 ionosphere 34 351 2 14 pima 9 768 2
4 flag 29 174 6 10 kr-vs-kp 37 3196 2 15 satimage 37 6435 6
5 german 21 1000 2 11 lettera 17 20000 26 16 vehicle 19 846 4
6 glass 10 214 6

the number of attribute (’Att’ column), number of examples (’Exa’ column) and
number of classes (’Cl’ column) of the sixteen datasets. The results of the AUC
values were estimated using the trapezoidal rule and are showed at Table 3. The
numbers between brackets indicate standard deviations.

The experiments with our algorithms were done with the same methodology
and paired datasets. The parameters for GRASP-PR Rule algorithm were 50%
for RCL and a maximum of 200 constructed solutions (100 for positive rules and
100 for negative rules). The MOPS algorithm was executed with 500 particles
and 50 generations for each class. The rules obtained with each algorithm were
used as a classifier using a weighted voted classification process (based on the
confidence). In this process, there is a set of rules voting example by example,
each one on its class. Thus, for each instance of the database, we obtain a numeric
rank. This rank can be used as a threshold to produce a binary classifier. If the
rank of the instance goes beyond the threshold, the classifier produces a ”yes”,
otherwise a ”no”. Then, for a given threshold exists a point in the ROC plane,
so, varying the threshold from −1 to +1 produces a curve on the ROC plane
and we are able to calculate the AUC [18] using the trapezoidal rule.

5.2 Comparison with Other Systems

Both algorithms were executed 50 times for each dataset and the mean of all AUC
and its standard deviation are presented at second column of Table 3. The distri-
butions of the AUC values for each dataset were verified with Shapiro-Wilk test
[20], all the distributions follow a normal distribution, with exceptions of datasets
#1, #2, #3 and #16 for GRASP-PR, and datasets #5, #11, #12 and #15 for
MOPS algorithm. Then, all the analysis were done using T-test with 95% confi-
dence level. The GRASP-PR algorithm was taken as basis. The cells, at Table 3,
without background colour indicate no statistical difference between algorithms;
dark gray is used to represent cells statistically worse than GRASP-PR Rule al-
gorithm and light gray indicates cells statistically better than our meta-heuristic
algorithm. For space reasons, only summary results are reported here, the graph-
ics of Pareto fronts can be on-line accessed at http://grasppr.googlepages.com/.
Future work will explore these results in depth.

Considering the results of GRASP-PR and MOPS algorithms for each dataset,
we can observe a great difference of AUC values between them. The first one
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Table 3. Mean AUC

# GRASP-PRMOPS ROCCER C45 C45NP CN2 CN2OR Ripper Slipper

1 99.04(0.25) 98.75(0.16)98.63(1.88) 97.76(1.51) 98.39(1.3) 99.26(0.81) 99.13(0.92) 98.72(1.38) 99.24(0.57)
2 68.07(0.64) 66.15(1.1) 65.3(7.93) 62.14(9.91) 57.44(11.92)62.74(8.85) 62.21(8.11) 69.1(7.78) 59.84(6.44)
3 90.33(1.51) 82.69(2.22)90.31(11.56)50(0) 90.06(7.75) 90.17(6.9) 85.15(11.38)61.86(25.49)74.78(15.94)
4 70.66(1.76) 63.26(4.37)61.83(24.14)50(0) 68.68(17.22)53.22(24.12)42.78(24.43)45.28(14.93)52.35(7.44)
5 74.67(0.46) 73.39(0.83)72.08(6.02) 71.43(5.89) 67.71(4.12) 75.25(5.38) 70.9(4.7) 64.02(13.62)71.32(6.2)
6 82.13(1.31) 65(4.19) 79.45(12.98)50(0) 81.5(12.65) 73.74(15.4) 79.64(13.24)49.75(0.79) 50(2.36)
7 59.32(1.05) 59.96(1.23)66.41(11.54)55.84(6.14) 64.33(13.58)59.83(9.87) 59.28(10.13)57.45(3.85) 50.4(11.14)
8 88.59(0.33) 87.48(0.6) 85.78(8.43) 84.81(6.57) 81.11(7.91) 83.61(6.89) 82.25(6.59) 84.89(7.68) 84.03(6.36)
9 96.13(0.76) 81.19(2.84)94.18(4.49) 86.09(9.97) 90.91(6.03) 96.23(2.97) 92.18(7.54) 92.06(5.94) 93.95(6.82)
10 98.91(0.09) 95.78(0.53)99.35(0.36) 99.85(0.2) 99.86(0.2) 99.85(0.16) 99.91(0.17) 99.85(0.21) 99.91(0.09)
11 96.67(0.26) 93.8(0.72) 96.08(0.52) 95.49(1.96) 99.33(0.46) 99.34(0.28) 99.44(0.63) 97.27(1.86) 98.82(0.44)
12 98.35(0.39) 87.62(0.43)98.4(1.7) 87.85(10.43)97.5(3.39) 99.14(1.19) 98.43(2.58) 94.95(9.94) 99.12(1.25)
13 99.48(0.08) 85.91(0.61)97.85(0.44) 99.42(0.14) 99.74(0.13) 100(0) 99.99(0.01) 99.43(0.26) 94.4(1.59)
14 71.02(0.65) 71.67(0.83)70.68(5.09) 72.07(4.42) 72.6(6.5) 70.96(4.62) 71.97(5.44) 68.07(9.46) 70.02(5.97)
15 90.7(0.27) 65.39(9.11)89.39(2.38) 90.15(1.7) 91.31(1.32) 91.48(1.45) 91.48(0.9) 86.83(3.94) 89.06(1.98)
16 96.83(0.51) 88.83(1.02)96.42(1.47) 94.76(3) 96.99(1.44) 97.38(2.05) 96.49(2.41) 95.01(2.22) 93.99(3.13)
Avg86.31 84.09 85.13 77.98 84.84 84.51 83.20 79.03 80.08

is better for most datasets, and it is worse only on dataset (#14), and there is
no difference at one dataset. Despite of the number that our algorithm is better
than other algorithms, the greatest values are against the C4.5 and Slipper with
twelve and nine greater values, respectively. Against the Ripper, GRASP-PR
Rule algorithm wins at 6 datasets. Against the C45NP and CN2OR, GRASP-
PR Rule algorithm wins at 4 datasets. The worst performance is against the
CN2, GRASP-PR Rule algorithm wins at 3 datasets and lose at 4 datasets.
Against the ROCCER, there is no difference at most part of the datasets, with
two wins for each one. The datasets #10, #11 and #13 are the datasets where
the GRASP-PR Rule algorithm does not have good results.

5.3 Pareto Dominance

The Pareto front of the both algorithms were compared through the dominance
ranking [14] using the PISA framework [1]. Each Pareto front receives a rank
based on the domination relation by counting the number of fronts that it dom-
inates. The one-tailed Mann-Whitney rank sum test [14] is applied to verify sta-
tistical difference between ranking of the two algorithms. The results for most
datasets, including all folds, indicate that none of them, neither GRASP-PR Rule
or MOPS algorithms, generates a better Pareto front according to dominance
ranking with a significance level of 5%.

Another comparison was made using the hypervolume indicator [21]. For each
fold, a ranking is generated with the Pareto fronts, this ranking is tested using the
one-tailed Mann-Whitney rank sum test. The GRASP-PR Rule algorithm out-
performs MOPS algorithm at 78% of the Pareto according to the hypervolume
indicator. And, at just 18%, MOPS has front that outperforms the GRASP-PR
Rule algorithm.

Both experiments conducted here with GRASP-PR Rule learning and MOPS
algorithm show better results for GRASP-PR Rule learning. The AUC mean
values presents good values if we compare with other algorithms. Furthermore,
the Pareto dominance indicates that GRASP-PR Rule algorithm outperforms
MOPS algorithm in most part of the datasets. However, considering the time
processing, the GRASP-PR Rule learning algorithm spent almost 200 hours for



Exploring Multi-objective PSO and GRASP-PR for Rule Induction 83

the 50 executions of all datasets, against approximately 100 hours for the MOPS
algorithm.

6 Conclusions

In this work, it was presented a different approach for classification-rule learn-
ing based on multiobjective metaheuristics. The approach works finding the
best nondominated rules of a problem and forming unordered classifiers. Two
techniques were evaluated using the sensitivity and specificity criterion as ob-
jectives: a Greedy Randomized Adaptive Search Procedure with path-relinking
(GRASPPR), and Multiple Objective Particle Swarm (MOPS). Two different
empirical evaluations were performed. The first one compares GRASP-PR Rule
and MOPS algorithms to different well known algorithms into different data sets
using the area under the ROC curve. The results showed that the algorithms
are competitive with others of the literature. Besides this, GRASP-PR Rule al-
gorithm outperforms MOPS algorithm in almost datasets. The second empirical
study investigates the quality of the solutions provided by GRASP-PR Rule
and MOPS algorithms based on the concept of Pareto dominance. Once again,
GRASP-PR Rule algorithm outperforms MOPS algorithm in almost datasets.
Concluding, rules with high sensitivity and specificity can be used to compose
a classifier which presents good AUC performance. Furthermore, these rules
can be created using a multi-objective metaheuristic approach. However, both
metaheuristics can be improved. For the GRASP-PR Rule algorithm, a depth
study must be done about the influence of: the size of the RCL list, the local
search strategy and the neighbourhood. In the case of MOPS rule algorithm, a
better exploration of the Pareto front is needed. Future works will include the
above aspects and others like: parallel versions of the algorithms to deal with
large databases; multi-class datasets and a depth study on the features of the
classifiers produced by these algorithms.
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Abstract. Assembly line balancing problems are concerned with the
distribution of work required to assemble a product in mass or series
production among a set of work stations on an assembly line. The spe-
cific problem considered here is known as the time and space constrained
simple assembly line balancing problem. Among several possible objec-
tives we consider the one of minimizing the number of necessary work
stations. This problem is denoted by TSALBP-1 in the literature. For
tackling this problem we propose an extended version of our Beam-ACO
approach published in [3]. Beam-ACO algorithms are hybrid techniques
that result from combining ant colony optimization with beam search.
The experimental results show that our algorithm is able to find 128 new
best solutions in 269 possible cases.

1 Introduction

One of the most extensively studied assembly line balancing problems is known
as the simple assembly line balancing problem (SALBP) [12]. It concerns the dis-
tribution of work required to assemble a product among a set of work stations
on an assembly line, which is a sequence of work stations that are connected
by a transport system moving the product to be manufactured along the line.
Approaches for solving the SALBP include constructive heuristics based on pri-
ority rules (see [16]), complete techniques such as branch & bound approaches

� This work was supported by grants TIN-2005-08818-C04-01 and DPI2004-03475 of
the Spanish government, and by the Ramón y Cajal program of the Spanish Ministry
of Science and Technology of which Christian Blum is a research fellow. Moreover,
we acknowledge Nissan Spain and the UPC Nissan Chair for partially funding this
work.

J. van Hemert and C. Cotta (Eds.): EvoCOP 2008, LNCS 4972, pp. 85–96, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



86 C. Blum, J. Bautista, and J. Pereira

(see [8,7,13,15]), and several metaheuristics such as tabu search [14,9], simulated
annealing [17], evolutionary computation [6], and ant colony optmization [1].
Inspired by the Nissan plant in Barcelona, Spain, Bautista and Pereira proposed
an extension of the SALBP in [2] that—in addition to time constraints—also
covers space constraints. In this work we tackle this problem with the objective
of minimizing the necessary number of work stations. Henceforth we refer to the
tackled problem as the TSALBP-1.

Ant colony optimziation (ACO) [5] is a metaheuristic based on the probabilis-
tic construction of solutions. Instead of a standard ACO algorithm we implement
in this paper a hybrid ACO algorithm—known as Beam-ACO—that results from
combining ant colony optimization with a heuristic branch & bound derivative
called beam search. While in standard ACO algorithms artificial ants construct
solutions independently of each other, in Beam-ACO the solution constructions
at each iteration are non-independent and guided by a lower bound function.
In [3] we presented a first Beam-ACO approach to the TSALBP-1. In this work,
we present an extended version that results in significant performance improve-
ments. The extension basically consists in a more general handling of the beam
width, and a heuristic form of avoiding that partial solutions occur more than
once in the generated beam at each construction step.

The paper is organized as follows. In Sect. 2 we present a technical definition
of the TSALBP-1. In Sect. 3 we outline Beam-ACO. Finally, in Sect. 4 we present
the computational results, and in Sect. 5 we offer conclusions and an outlook on
future work.

2 TSALBP-1

Each TSALBP-1 instance is characterized by a quadruple (T, G, c, a), where
T = {1, . . . , n} is a set of n tasks. Each task j ∈ T has a processing time
tj > 0 and a space requirement aj > 0. Moreover, given is an acyclic, directed
precedence graph G whose node set is the set of given tasks. A directed arc (i, j)
in G indicates that task i must be processed before j. Given a task j ∈ T , we
denote by Prej ⊂ T the set of tasks that must be processed before j. Finally, c
is the so-called processing time limit of a work station (also know as the cycle
time), and a is the available space of a work station. Note that all work stations
are equal with respect to c and a.

Solutions. A solution is obtained by assigning each task to exactly one work
station. In this work we represent a solution s as an ordered set 〈S1, . . . , Sm〉 of
m ≤ n work stations. Each work station Sk ⊆ T is a set of tasks.. A solution
s is valid if the following 4 conditions are fullfilled: (1)

⋃m
k=1 Sk = {1, . . . , n}

and
⋂m

k=1 Sk = ∅. These conditions ensure that each task is assigned to exactly
one work station; (2)

∑
j∈Sk

tj ≤ c, for k = 1, . . . , m. This ensures that no
work station has too much load; (3)

∑
j∈Sk

aj ≤ a, for k = 1, . . . , m. Herewith
is ensured that the space limits of the work stations are not exceeded; (4) for each
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j ∈ Sk it is required that
⋃k

l=1 Sl contains Prej , which ensures that the prece-
dence constraints between the tasks are respected. Our algorithm exclusively
generates valid solutions.

Objective Function. In this work we aim to find a solution s, where m = |s| is
minimal. This objective contains large plateaus, that is, many different solutions
have the same number of work stations. Hence, the number of work stations
is not operational for guiding a metaheuristic to promising parts of the search
space. Therefore, we introduce a second criterion in order to distinguish between
solutions with the same number of work stations. The second criterion concerns
the remaining time and space in the last work station Sm ∈ s. We use the
following notations: trem(s) := c −

∑
j∈Sm

tj and arem(s) := a −
∑

j∈Sm
aj . Using

these notations, the second criterion is defined as g(s) := trem(s)
c + arem(s)

a . Given
g(·) we can define a comparison operator f(·) as follows. Given two solutions
s 	= s′, f(s) < f(s′) ⇔ |s| < |s′| OR |s| = |s′| and g(s) < g(s′). This means
that—in the case of equality concerning the number of work stations—preference
is given to the solution with more time and space remaining in the last work
station. The idea is that such a solution is somehow closer to a solution with
only m − 1 work stations. Finally, despite the fact that Beam-ACO uses the
comparison operator f(·) for guiding the search process, we will present the
results only in terms of the original objective, that is, the number of used work
stations.

Reverse Problem Instances. Given a problem instance (T, G, c, a), the corre-
sponding reverse problem instance (T, Gr, c, a) is obtained by inverting all the
arcs in the precedence graph G. Each solution sr = 〈S1, . . . , Sm〉 to the reverse
problem instance (T, Gr, c, a) can be converted into a solution s to the origi-
nal problem instance (T, G, c, a) by inverting the ordered list of tasks, that is,
s = 〈Sm, . . . , S1〉. It is known from the literature (see, for example, [12]) that
the reverse problem instance may be easier to solve than the original one, or vice
versa.

3 The Algorithm

In this section we describe our implementation of Beam-ACO for the TSALBP-
1. In general, Beam-ACO works as any other ACO algorithm. At each iteration
candidate solutions are probabilistically constructed on the basis of a so-called
pheromone model T , which is a set of numerical values that encode the algo-
rithms’ search experience. In contrast to standard ACO algorithms in which
each solution construction is independent from the others, Beam-ACO employs
a parallel and non-independent construction of the solutions of an iteration in
the style of beam search. After the construction phase, some of the generated
solutions are used to update the pheromone values in a way that aims at biasing
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Algorithm 1. Priority-rule (PR) heuristic for the TSALBP-1
1: input: A TSALBP-1 instance (T, G, c, a)
2: m := 0
3: while T 	= ∅ do
4: m := m + 1
5: Sm ←FillWorkStation(T, m) /* see Algorithm 2 */
6: T := T \ Sm

7: end while
8: output: Solution s = 〈S1, . . . , Sm〉

Algorithm 2. Function FillWorkStation(T, m)
1: input: A set T of tasks, and the index k of the work station to be filled
2: T ′ := T
3: crem := c, arem := a
4: T av := {i ∈ T ′ | crem ≥ ti, arem ≥ ai, Prei ∩ T ′ = ∅}
5: Sm := ∅
6: while T av 	= ∅ do
7: j ←ChooseTask(T av)
8: T ′ := T ′ \ {j}
9: crem := crem − tj , arem := arem − aj

10: T av := {i ∈ T ′ | crem ≥ ti, arem ≥ ai, Prei ∩ T ′ = ∅}
11: Sm := Sm ∪ {j}
12: end while
13: output: Filled work station Sm

future solution constructions towards good areas of the search space identified
during the search process.

3.1 A Priority Rule Heuristic

As solution construction mechanism we utilize in the Beam-ACO algorithm the
construction process of a so-called priority rule (PR) heuristic in which work
stations are filled one after the other. At each step, one of the available tasks (that
is, tasks whose predecessors are already assigned to work stations) is selected
and assigned to the current work station. This is done until no available task
can be added to the current work station without exceeding the cycle time or
the space limit. When this situation occurs, the algorithm opens the next work
station. This process is continued until all tasks are assigned to work stations.
The PR heuristic is shown in Algorithm 1.

When filling a work station, the successive choice of tasks is performed in
function ChooseTask(T av) (see Algorithm 2), which works as follows. Given a
partial solution s, first the set of available tasks is determined:

T av := {i ∈ T ′ | crem ≥ ti, arem ≥ ai, Prei ∩ T ′ = ∅} , (1)
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where crem and arem are as defined in Algorithm 2. In words, set T av consists of all
tasks from T ′ that still fit into the work station under consideration, and whose
set of predecessors is already assigned to work stations. Moreover, let T sat ⊆ T av

be the set of available tasks such that crem − tj = 0 or arem − aj = 0, ∀j ∈
T sat. Henceforth, we call T sat the set of saturating available tasks, because they
saturate—in terms of available processing time—the current work station. If T sat

is non-empty, a task is chosen from T sat, otherwise from T av. The actual choice of
a task is done by using a so-called priority rule. In our work we employ a mixed
rule that gives joint priority to the duration of a task, the space requirement of
a task, and the total number of tasks succeeding it. The priority rule value of a
task j ∈ T av is computed as follows:

ηj :=
tj
c

+
aj

a
+

∣∣Sucall
j

∣∣
max1≤i≤n |Sucall

i | (2)

Hereby, Sucall
j denotes the set of all tasks that can be reached from j in the

precedence graph G via a directed path. Function ChooseTask(T av) is imple-
mented such that the task with the maximal priority value is chosen. The use of
priority rule heuristics is quite popular, because they are fast in execution and
achieve reasonably good results.

3.2 Beam-ACO for TSALBP-1

Our Beam-ACO approach—shown in Algorithm 3—works as follows. First, the
PR heuristic outlined in the previous section is used in function GenerateFirstSo-
lution() for generating a first solution. In fact, the PR heuristic is applied to the
original as well as to the reverse problem instance. After converting the latter so-
lution to be a solution to the original instance, the function returns the better of
the two solutions. Then, the pheromone values are initialized. At each algorithm
iteration, a probabilistic beam search is applied in order to construct solutions
to the original problem instance as well as to the reverse problem instance. Note
that a solution construction is aborted in case the current partial solution must
lead to a final solution worse than the best one found so far. This is deter-
mined by means of a lower bound. Finally, the pheromone values are updated
in function UpdatePheromoneTrail(T ,∗). The pheromone values are re-initialized
in case of algorithm convergence. In Algorithm 3 we use the following notations:
T = {τj,k}j,k=1,...,n is the set of pheromone values. A pheromone value τj,k rep-
resents the desirability of assigning task j to work station k. Furthermore, sib is
the best solution constructed at an iteration, and sbsf is the best solution found
since the start of the algorithm. The functions of our algorithm are outlined in
more detail below.

ProbabilisticBeamSearch(T ,sbsf): This function—shown in Algorithm 4—performs
a probabilistic beam search based on the solution construction mechanism of the
PR heuristic (see Algorithm 1). Beam search is a classical tree search method that
was introduced in the context of scheduling [11]. The central idea behind beam
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Algorithm 3. Beam-ACO for TSALBP-1
1: input: A TSALBP-1 instance (T, G, c, a)
2: sbsf ← GenerateFirstSolution()
3: forall τj,k ∈ T do τj,k := 0.5 end forall
4: cf := 0
5: while termination conditions not satisfied do
6: Iori ← ProbabilisticBeamSearch(T ,sbsf) /* see Algorithm 4 */
7: Irev ← ProbabilisticBeamSearch(Reverse)(T ,sbsf)
8: I := Iori ∪ Irev

9: if I = ∅ then
10: UpdatePheromoneTrail(T ,sbsf)
11: else
12: sib := min{f(si) | si ∈ I}
13: UpdatePheromoneTrail(T ,sib)
14: if f(sib) < f(sbsf) then sbsf := sib

15: end if
16: cf ← ComputeConvergenceFactor(T )
17: if cf < 0.05 then
18: forall τj,k ∈ T do τj,k := 0.5 end forall
19: end if
20: end while
21: output: sbsf

search is to allow the extension of partial solutions in several possible ways. At
each step the algorithm extends each partial solution from a set B—called the
beam—at most kext times. In standard beam search, each extension is chosen in
a deterministic way with respect to a heuristic function that gives weights to the
possible extensions. In our case extensions are done partly in a probabilistic way
depending on the pheromone model of the underlying ACO algorithm (see below).
Each newly obtained partial solution is either stored in set Bcompl in case it is a
complete solution, or in set Bext otherwise. At the end of each construction step,
the beam search algorithm creates a new beam B by selecting up to kbw (called
the beam width) solutions from the set of further extensible solutions Bext. This is
done in function SelectSolutions(Bext,kbw) by means of a lower bound LB(·).

The extension of a partial solution s consists in filling the next work station.
This is done by function FillWorkStation(Ts, m) which is shown in Algorithm 2.
Hereby, Ts denotes the set of tasks that—with respect to s—are not yet assigned
to work stations. Function ChooseTask(T av) of Algorithm 2 is implemented as
follows. First, we flip a coin in order to decide if the extension is performed
deterministically, or probabilistically. In case of a deterministic extension, the
set of tasks from which to choose an operation, denoted by T c, is determined as
follows: If the set of available saturating tasks T sat ⊆ T av is non-empty, we set
T c := T sat, otherwise T c := T av (see Sect. 3.1 for the definition of T sat and T av).
Then, from T c is chosen the task that maximizes
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Algorithm 4. Function ProbabilisticBeamSearch(T ,sbsf) of Algorithm 3
1: input: The set of pheromone values T , the best-so-far solution sbsf

2: m := 0
3: s := 〈〉
4: B := {s}
5: Bcompl := ∅
6: while B 	= ∅ do
7: Bext := ∅
8: m := m + 1
9: for all s ∈ B do

10: for i = 1, . . . , kext do
11: Si

m ←FillWorkStation(Ts, m) /* see Algorithm 2 */
12: sext := s ∪ Si

m

13: if |Tsext | = 0 then
14: Bcompl := Bcompl ∪ {sext}
15: else
16: if LB(sext) < |sbsf| then
17: if Si

m is different to the last work station of all s′ ∈ Bext then
18: Bext := Bext ∪ {sext}
19: end if
20: end if
21: end if
22: end for
23: end for
24: B ←SelectSolutions(Bext,kbw)
25: end while
26: output: A (possibly empty) set of solutions Bcompl

pj =

(
k∑

i=1
τj,i

)
· ηaco

j

∑
l∈T c

(
k∑

i=1
τl,i

)
· ηaco

l

. (3)

Note that Eqn. 3 uses the summation rule introduced in [10] for scheduling prob-
lems. The heuristic information ηaco

∗ is derived as follows. Let ηmin := min{ηj | j ∈
T } and ηmax := max{ηj | j ∈ T } be the minimum, respectively the maximum,
of the priority rule values as defined in Eqn. 2. Then,

ηaco
j :=

ηj − ηmin + 1
ηmax

∀ j ∈ T . (4)

In case of a probabilistic extension, T c is set to T av, and a task is chosen by
roulette-wheel-selection with respect to the probabilities shown in Eqn. 3.

After the extension of a partial solution s, we first check if the result sext is
a complete solution (see line 13 of Algorithm 4). If this is the case, it is added
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to the set Bcompl of already completed solutions. Otherwise, two conditions must
be satisfied for considering sext for further extension, that is, for adding sext to
set Bext. First, the lower bound value LB(sext) must be smaller or equal to the
objective function value of the best-so-far solution sbsf. And second, the last
work station of sext is required to be different to the last work station of all
solutions that are already in Bext. This is a heuristic way of avoiding that the
same solution appears more than once in Bext.

In this work we use a relatively simple lower bound—denoted by LB(·)—for
evaluating partial solutions: Given a partial solution s and the set of tasks Ts

(that is, tasks that are not yet assigned to work stations), the lower bound is
defined as follows:

LB(s) = max

⎧
⎪⎨
⎪⎩

⎡
⎢⎢⎢⎢

∑
j∈Ts

tj

c

⎤
⎥⎥⎥⎥

,

⎡
⎢⎢⎢⎢

∑
j∈Ts

aj

a

⎤
⎥⎥⎥⎥

⎫
⎪⎬
⎪⎭

(5)

Note that this lower bound is a simple adaptation of the LM1 bound (see, for
example, [12]) for the SALBP-1 to the TSALBP-1. Finally, the beam B of the
next iteration of the construction procedure is selected from set Bext in function
SelectSolutions(Bext,kbw) of Algorithm 4. First, the solutions in Bext are ranked
with respect to increasing lower bound values. In case of ties, we use the re-
maining time in the last work station as tie breaker, that is, we consider a work
station with less remaining time as better. Further ties are randomly broken.
Then, we select the min{kbw, |Bext|} highest ranked partial solutions from Bext.

Note that function ProbabilisticBeamSearch(Reverse)(T ,sbsf) works in the same
way as function ProbabilisticBeamSearch(T ,sbsf), just that it is applied to the re-
verse problem instance.

ComputeConvergenceFactor(T ): Given the current pheromone values, this func-
tion computes a value cf to indicate the state of convergence of the algorithm:

cf := 2 ·

⎛
⎜⎜⎜⎝

n∑
j=1

|sbsf|∑
k=1

min{τmax − τj,k, τj,k − τmin}

n · |sbsf| · (τmax − τmin)

⎞
⎟⎟⎟⎠ (6)

When the pheromone values are initialized, cf is 1; on the other side, when all
pheromone values are either equal to τmax or to τmin, cf is 0. We have set τmax to
0.99, and τmin to 0.01. Note that these value settings are motivated by the work
presented in [4].

UpdatePheromoneTrail(T ,∗): This function either uses solution sib or solution
sbsf for updating the pheromone values. sbsf is only used in case no iteration best
solution exists, which might occur due to solution construction abortions. Let us
denote the updating solution by supd. Then, for j = 1, . . . , n and k = 1, . . . , |supd|
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the corresponding pheromone value τj,k is updated as follows:

τj,k = min {max {τmin, τj,k + ρ · (δj,k − τj,k)} , τmax} , (7)

where ρ ∈ (0, 1] is a learning rate (which we have set to 0.1 for all the experi-
ments). Moreover, δj,k is 1, if task j is assigned to work station k in solution supd,
and 0 otherwise. This concludes the description of the Beam-ACO algorithm.
The experimental results are outlined in the following section.

4 Computational Results

We implemented the Beam-ACO algorithm in ANSI C++ using GCC 3.2.2 for
compiling the software. Our experimental results were obtained on a PC with In-
tel Pentium 4 processor (3.06 GHz) and 1 Gb of memory, running Debian Linux.

Table 1. Comparison of Beam-ACO with ANTS
and Beam-ACO-1 on the 26 instances based on
the SCHOLL precedence graph

c, a ANTS Beam-ACO-1 [3] Beam-ACO
best average (std) average time (std)

1394 60 59 56 56.90 (0.32) 29.31 (60.78)
1422 58 59 55 55.70 (0.48) 55.64 (101.65)
1452 58 57 54 54.90 (0.32) 18.90 (39.23)
1483 56 55 53 53.00 (0.00) 28.62 (17.73)
1515 54 54 50 51.00 (0.47) 125.62 (108.64)
1548 53 53 49 49.80 (0.42) 44.18 (79.60)
1584 53 51 48 48.00 (0.00) 116.88 (28.51)
1620 50 49 46 46.00 (0.00) 67.60 (13.98)
1659 49 48 45 45.00 (0.00) 66.56 (24.91)
1699 47 46 44 44.00 (0.00) 6.10 (6.03)
1742 46 45 42 42.90 (0.32) 26.10 (64.68)
1787 45 44 41 41.60 (0.52) 95.18 (138.50)
1834 43 43 40 40.00 (0.00) 133.68 (37.01)
1883 42 42 39 39.00 (0.00) 89.41 (15.98)
1935 41 41 38 38.00 (0.00) 120.25 (18.07)
1991 40 40 37 37.00 (0.00) 126.43 (18.33)
2049 39 38 36 36.00 (0.00) 124.99 (20.37)
2111 37 37 35 35.00 (0.00) 84.91 (26.08)
2177 36 36 34 34.00 (0.00) 44.09 (23.54)
2247 35 34 33 33.00 (0.00) 63.31 (11.82)
2322 34 33 32 32.00 (0.00) 32.85 (12.80)
2402 33 32 31 31.00 (0.00) 36.63 (19.73)
2488 32 31 30 30.00 (0.00) 4.80 (4.26)
2580 30 30 29 29.00 (0.00) 2.19 (0.05)
2680 29 29 28 28.00 (0.00) 2.17 (0.05)
2787 28 28 27 27.00 (0.00) 2.39 (0.65)

We applied our algorithm to the
269 TSALBP-1 instances that
were generated by Bautista and
Pereira (see [2]) from the 269
SALBP-1 instances existing in
the literature. This was done by
setting aj := tn−j+1 for all j ∈ T ,
and a := c. Beam-ACO was ap-
plied 10 times to all 269 instances
for 360 seconds per run. These
are the same settings that were
chosen for the first Beam-ACO
approach published in [3]; hence-
forth referred to as Beam-ACO-1.

First, we show a comparison
of Beam-ACO with the first al-
gorithm developed to tackle the
TSALBP-1—called ANTS [2]—
and Beam-ACO-1. While ANTS
was applied to all 269 problem
instances, Beam-ACO-1 was only
applied to the 26 instances based
on the precedence graph called SCHOLL. Table 1 presents a comparison of the
3 algorithms on these 26 instances. Cycle time, respectively space limit, are in-
dicated in the first table column. The second column contains the values of the
best solutions found by ANTS, while the third column presents the values of the
best solutions found by Beam-ACO-1. Finally, the last 3 table columns provide
the results of Beam-ACO, concerning the best solution found in 10 runs (best),
the average and standard deviation of the results (average (std)), and the times
including the standard deviation at which the best solutions were found (aver-
age time (std)). While Beam-ACO-1 was only able to improve over ANTS in
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14 out of 26 cases, our extended Beam-ACO approach can find new best solu-
tions for all 26 instances, again finding better solutions even for the 14 cases in
which Beam-ACO-1 was able to improve over ANTS. Note that the improve-
ments are up to 4 work stations, which is impressive in the context of assembly
line balancing problems.

Table 2. Results of Beam-ACO—in comparison to ANTS—when applied to 243
TSALBP-1 problem instances (part A)

Data set (size) c ANTS Beam-ACO Data set (size) c ANTS Beam-ACO
best avg. (std) avg. time (std) best avg. (std) avg. time (std)

Mukherje (94) 248 20 19 19.00 (0.00) 0.51 (0.02) Warnecke (58) 58 36 35 35.00 (0.00) 26.91 (24.09)
263 18 18 18.00 (0.00) 0.48 (0.02) 60 33 34 34.00 (0.00) 1.94 (1.17)
281 17 16 16.00 (0.00) 0.47 (0.02) 62 32 31 31.00 (0.00) 2.45 (1.60)
301 16 15 15.00 (0.00) 1.49 (1.67) 65 30 29 29.00 (0.00) 0.84 (0.29)
324 15 14 14.00 (0.00) 0.44 (0.02) 68 28 27 27.00 (0.00) 0.55 (0.16)
351 13 13 13.00 (0.00) 0.44 (0.02) 71 27 26 26.00 (0.00) 0.51 (0.18)

Roszieg (X) 14 12 12 12.00 (0.00) 0.04 (0.01) 74 25 24 24.20 (0.42) 130.83 (118.83)
16 9 9 9.00 (0.00) 0.00 (0.00) 78 24 23 23.00 (0.00) 0.57 (0.02)
18 8 8 8.00 (0.00) 0.00 (0.00) 82 22 22 22.00 (0.00) 0.27 (0.02)
21 7 7 7.00 (0.00) 0.00 (0.00) 86 21 20 20.00 (0.00) 0.49 (0.24)
25 6 6 6.00 (0.00) 0.00 (0.00) 92 20 19 19.00 (0.00) 0.35 (0.12)
32 5 5 5.00 (0.00) 0.00 (0.00) 97 19 17 17.70 (0.48) 41.59 (70.78)

Sawyer (30) 25 16 16 16.00 (0.00) 0.10 (0.03) 104 17 16 16.00 (0.00) 0.54 (0.22)
27 14 14 14.00 (0.00) 0.10 (0.03) 111 16 16 16.00 (0.00) 0.00 (0.00)
30 13 13 13.00 (0.00) 0.10 (0.03) Wee-Mag (75) 28 67 67 67.00 (0.00) 12.14 (7.73)
33 11 11 11.00 (0.00) 0.09 (0.03) 29 65 65 65.20 (0.42) 73.54 (95.21)
36 10 10 10.00 (0.00) 0.09 (0.04) 30 64 64 64.00 (0.00) 0.00 (0.00)
41 9 9 9.00 (0.00) 0.07 (0.01) 31 63 63 63.00 (0.00) 1.16 (0.04)
47 8 8 8.00 (0.00) 0.00 (0.00) 32 62 62 62.00 (0.00) 0.00 (0.00)
54 7 7 7.00 (0.00) 0.00 (0.00) 33 62 62 62.00 (0.00) 0.00 (0.00)
75 5 5 5.00 (0.00) 0.00 (0.00) 34 61 61 61.00 (0.00) 0.00 (0.00)

Tonge (70) 160 28 27 27.00 (0.00) 4.48 (3.35) 35 61 61 61.00 (0.00) 0.00 (0.00)
168 26 26 26.00 (0.00) 2.13 (1.42) 36 60 60 60.00 (0.00) 0.00 (0.00)
176 25 24 24.20 (0.42) 119.45 (103.50) 37 60 60 60.00 (0.00) 0.00 (0.00)
185 23 23 23.00 (0.00) 1.25 (1.39) 38 60 60 60.00 (0.00) 0.00 (0.00)
195 22 21 21.30 (0.48) 123.42 (121.85) 39 60 60 60.00 (0.00) 0.00 (0.00)
207 20 20 20.00 (0.00) 2.35 (0.93) 40 60 60 60.00 (0.00) 0.00 (0.00)
220 19 19 19.00 (0.00) 0.33 (0.11) 41 59 59 59.00 (0.00) 0.00 (0.00)
234 18 17 17.30 (0.48) 99.70 (115.25) 42 55 55 55.00 (0.00) 7.26 (3.95)
251 17 17 17.00 (0.00) 0.29 (0.01) 43 51 50 50.00 (0.00) 13.48 (17.21)
270 15 15 15.00 (0.00) 8.64 (7.43) 45 43 41 41.70 (0.48) 66.63 (101.47)
293 14 14 14.00 (0.00) 0.50 (0.09) 46 38 37 37.00 (0.00) 53.66 (57.22)
320 13 13 13.00 (0.00) 0.00 (0.00) 47 36 34 34.30 (0.48) 129.99 (128.18)
364 12 11 11.00 (0.00) 0.30 (0.20) 49 34 33 33.00 (0.00) 0.73 (0.23)
410 10 10 10.00 (0.00) 0.00 (0.00) 50 33 32 32.00 (0.00) 1.55 (1.07)
468 9 9 9.00 (0.00) 0.00 (0.00) 52 32 32 32.00 (0.00) 0.65 (0.02)
527 8 8 8.00 (0.00) 0.00 (0.00) 54 31 31 31.00 (0.00) 0.66 (0.02)

Warnecke (58) 54 40 39 39.00 (0.00) 5.10 (3.25) 56 30 30 30.00 (0.00) 6.09 (6.06)
56 37 36 36.00 (0.00) 1.47 (0.86)

The results for the 243 remaining problem instances are shown in Tables 2
and 3. The format of these tables is the same as the format of Table 1, except
for the fact that the column for Beam-ACO-1 is missing. The results show that
Beam-ACO is able to improve in 102 cases (in addition to the 26 SCHOLL
instances) over the results of ANTS. Only in one case—Warnecke, c = a = 60—
the best solution found by Beam-ACO is 1 work station worse than the best
solution found by ANTS. In the remaining cases Beam-ACO and ANTS found
best solutions of the same quality. The obtained results show that Beam-ACO
is clearly a current state-of-the-art algorithm for the TSALBP-1 problem.
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Table 3. Results of Beam-ACO—in comparison to ANTS—when applied to 243
TSALBP-1 problem instances (part B)

Data set (size) c ANTS Beam-ACO Data set (size) c ANTS Beam-ACO
best avg. (std) avg. time (std) best avg. (std) avg. time (std)

Arcus1 (83) 5755 30 27 27.00 (0.00) 0.00 (0.00) Hahn (X) 2004 9 9 9.00 (0.00) 0.00 (0.00)
5785 30 27 27.00 (0.00) 0.00 (0.00) 2338 8 8 8.00 (0.00) 0.00 (0.00)
6016 28 26 26.00 (0.00) 0.00 (0.00) 2806 6 6 6.00 (0.00) 0.00 (0.00)
6267 26 25 25.00 (0.00) 0.00 (0.00) 3507 5 5 5.00 (0.00) 0.00 (0.00)
6540 25 24 24.00 (0.00) 0.00 (0.00) 4676 4 4 4.00 (0.00) 0.00 (0.00)
6837 24 23 23.00 (0.00) 0.00 (0.00) Heskiaoff (28) 138 8 8 8.00 (0.00) 0.07 (0.01)
7162 23 22 22.00 (0.00) 0.00 (0.00) 205 6 6 6.00 (0.00) 0.00 (0.00)
7520 22 21 21.00 (0.00) 0.00 (0.00) 216 5 5 5.00 (0.00) 0.05 (0.00)
7916 21 20 20.00 (0.00) 0.00 (0.00) 256 5 5 5.00 (0.00) 0.00 (0.00)
8356 20 19 19.00 (0.00) 0.00 (0.00) 324 4 4 4.00 (0.00) 0.00 (0.00)
8847 19 18 18.00 (0.00) 0.00 (0.00) 342 4 3 3.00 (0.00) 0.24 (0.29)
9400 18 17 17.00 (0.00) 0.00 (0.00) Jackson (11) 7 8 8 8.00 (0.00) 0.01 (0.00)
10027 16 16 16.00 (0.00) 0.00 (0.00) 9 6 6 6.00 (0.00) 0.00 (0.00)
10743 15 15 15.00 (0.00) 0.00 (0.00) 10 6 6 6.00 (0.00) 0.00 (0.00)
11378 14 14 14.00 (0.00) 0.00 (0.00) 13 4 4 4.00 (0.00) 0.00 (0.00)
11570 14 13 13.00 (0.00) 8.61 (15.40) 14 4 4 4.00 (0.00) 0.00 (0.00)
17067 9 9 9.00 (0.00) 0.00 (0.00) 21 3 3 3.00 (0.00) 0.00 (0.00)

Arcus2 (111) 3786 25 24 24.00 (0.00) 7.70 (6.89) Jaeschke (X) 6 9 9 9.00 (0.00) 0.00 (0.00)
3985 23 22 22.00 (0.00) 0.83 (0.31) 7 7 7 7.00 (0.00) 0.00 (0.00)
4206 22 21 21.00 (0.00) 0.40 (0.13) 8 7 7 7.00 (0.00) 0.00 (0.00)
4454 21 20 20.00 (0.00) 0.61 (0.11) 10 4 4 4.00 (0.00) 0.00 (0.00)
4732 19 19 19.00 (0.00) 0.31 (0.01) 18 3 3 3.00 (0.00) 0.00 (0.00)
5048 18 18 18.00 (0.00) 0.29 (0.01) Kilbridge (45) 56 11 11 11.00 (0.00) 0.21 (0.14)
5408 17 16 16.00 (0.00) 2.21 (2.36) 57 11 11 11.00 (0.00) 0.12 (0.05)
5824 15 15 15.00 (0.00) 0.00 (0.00) 62 10 10 10.00 (0.00) 0.00 (0.00)
5853 15 15 15.00 (0.00) 0.00 (0.00) 69 9 9 9.00 (0.00) 0.00 (0.00)
6309 14 14 14.00 (0.00) 0.00 (0.00) 79 8 8 8.00 (0.00) 0.00 (0.00)
6842 13 13 13.00 (0.00) 0.00 (0.00) 92 7 7 7.00 (0.00) 0.00 (0.00)
6883 13 13 13.00 (0.00) 0.00 (0.00) 110 6 6 6.00 (0.00) 0.00 (0.00)
7571 12 11 11.00 (0.00) 0.49 (0.02) 111 6 5 5.00 (0.00) 1.35 (1.42)
8412 10 10 10.00 (0.00) 0.00 (0.00) 138 5 5 5.00 (0.00) 0.00 (0.00)
8898 10 9 9.30 (0.48) 95.67 (100.97) 184 4 3 3.00 (0.00) 3.87 (3.86)
10816 8 8 8.00 (0.00) 0.00 (0.00) Lutz1 (89) 1414 13 13 13.00 (0.00) 0.00 (0.00)

Barthold (148) 403 16 15 15.00 (0.00) 3.99 (2.38) 1572 12 12 12.00 (0.00) 0.06 (0.01)
434 15 14 14.00 (0.00) 0.77 (0.03) 1768 10 10 10.00 (0.00) 0.05 (0.01)
470 14 13 13.00 (0.00) 0.76 (0.04) 2020 9 9 9.00 (0.00) 0.00 (0.00)
513 12 11 11.90 (0.32) 15.84 (47.71) 2357 8 8 8.00 (0.00) 0.00 (0.00)
564 11 10 10.90 (0.32) 29.58 (93.52) 2828 6 6 6.00 (0.00) 0.00 (0.00)
626 10 10 10.00 (0.00) 0.00 (0.00) Lutz2 (89) 11 57 54 54.00 (0.00) 21.35 (23.71)
705 9 8 8.30 (0.48) 97.10 (101.97) 12 54 52 52.00 (0.00) 4.68 (7.40)
805 8 8 8.00 (0.00) 0.00 (0.00) 13 51 51 51.00 (0.00) 95.21 (85.48)

Barthol2 (148) 84 59 57 57.90 (0.32) 92.91 (79.46) 14 51 51 51.00 (0.00) 0.00 (0.00)
85 58 56 56.00 (0.00) 66.67 (57.14) 15 42 40 40.00 (0.00) 2.26 (1.58)
87 56 52 52.70 (0.48) 62.84 (110.83) 16 38 36 36.00 (0.00) 1.07 (0.68)
89 54 51 51.00 (0.00) 8.56 (5.61) 17 35 34 34.00 (0.00) 0.69 (0.23)
91 53 49 49.90 (0.32) 15.84 (28.29) 18 34 33 33.00 (0.00) 1.09 (0.04)
93 52 48 48.00 (0.00) 32.21 (20.50) 19 33 33 33.00 (0.00) 0.60 (0.18)
95 51 47 47.00 (0.00) 12.36 (11.89) 20 29 27 27.00 (0.00) 2.15 (2.08)
97 49 46 46.00 (0.00) 4.72 (3.83) 21 27 26 26.00 (0.00) 1.43 (0.71)
99 49 45 45.00 (0.00) 2.20 (1.20) Lutz3 (89) 75 27 27 27.00 (0.00) 0.71 (0.29)
101 47 44 44.00 (0.00) 3.12 (1.49) 79 26 24 24.00 (0.00) 6.73 (4.65)
104 46 42 42.00 (0.00) 60.60 (33.18) 83 24 23 23.00 (0.00) 0.78 (0.81)
106 45 41 41.40 (0.52) 118.76 (122.13) 87 23 22 22.00 (0.00) 0.83 (0.83)
109 44 40 40.00 (0.00) 90.53 (50.49) 92 21 20 20.00 (0.00) 0.73 (0.53)
112 43 39 39.00 (0.00) 22.43 (16.81) 97 20 19 19.00 (0.00) 5.68 (3.06)
115 42 38 38.00 (0.00) 4.03 (1.91) 103 18 18 18.00 (0.00) 0.30 (0.03)
118 40 37 37.00 (0.00) 7.59 (5.29) 110 17 17 17.00 (0.00) 0.31 (0.02)
121 39 36 36.00 (0.00) 10.09 (10.27) 118 16 16 16.00 (0.00) 0.27 (0.01)
125 38 35 35.00 (0.00) 2.89 (1.21) 127 15 15 15.00 (0.00) 0.23 (0.01)
129 36 34 34.00 (0.00) 1.78 (0.73) 137 14 14 14.00 (0.00) 0.28 (0.01)
133 36 33 33.00 (0.00) 1.43 (0.41) 150 12 12 12.00 (0.00) 0.25 (0.01)
137 35 32 32.00 (0.00) 1.55 (0.57) Mansoor (11) 48 5 5 5.00 (0.00) 0.00 (0.00)
142 33 31 31.00 (0.00) 1.21 (0.03) 62 4 4 4.00 (0.00) 0.00 (0.00)
146 32 30 30.00 (0.00) 1.21 (0.02) 94 3 3 3.00 (0.00) 0.00 (0.00)
152 31 29 29.00 (0.00) 1.20 (0.01) Mertens (X) 6 7 7 7.00 (0.00) 0.00 (0.00)
157 30 28 28.00 (0.00) 1.17 (0.03) 7 7 7 7.00 (0.00) 0.00 (0.00)
163 29 27 27.00 (0.00) 1.14 (0.02) 8 6 6 6.00 (0.00) 0.00 (0.00)
170 28 26 26.00 (0.00) 1.14 (0.02) 10 3 3 3.00 (0.00) 0.00 (0.00)

Bowman (8) 20 6 6 6.00 (0.00) 0.00 (0.00) 15 2 2 2.00 (0.00) 0.00 (0.00)
Buxey (29) 27 14 14 14.00 (0.00) 0.07 (0.01) 18 2 2 2.00 (0.00) 0.00 (0.00)

30 13 13 13.00 (0.00) 0.00 (0.00) Mitchell (X) 14 10 10 10.00 (0.00) 0.00 (0.00)
33 12 12 12.00 (0.00) 0.00 (0.00) 15 9 9 9.00 (0.00) 0.01 (0.00)
36 11 11 11.00 (0.00) 0.15 (0.04) 21 6 6 6.00 (0.00) 0.00 (0.00)
41 9 9 9.00 (0.00) 0.06 (0.00) 26 5 5 5.00 (0.00) 0.00 (0.00)
47 8 8 8.00 (0.00) 0.00 (0.00) 35 4 4 4.00 (0.00) 0.00 (0.00)
54 7 7 7.00 (0.00) 0.00 (0.00) 39 3 3 3.00 (0.00) 0.00 (0.00)

Gunther (35) 41 18 18 18.00 (0.00) 0.00 (0.00) Mukherje (94) 176 27 27 27.00 (0.00) 0.74 (0.42)
44 14 14 14.00 (0.00) 0.14 (0.03) 183 27 25 25.00 (0.00) 48.13 (39.36)
49 12 12 12.00 (0.00) 0.08 (0.01) 192 26 24 24.00 (0.00) 4.32 (5.36)
54 10 10 10.00 (0.00) 0.08 (0.01) 201 25 23 23.00 (0.00) 5.09 (4.91)
61 9 9 9.00 (0.00) 0.00 (0.00) 211 23 22 22.30 (0.48) 83.74 (104.67)
69 8 8 8.00 (0.00) 0.11 (0.03) 222 23 22 22.00 (0.00) 0.00 (0.00)
81 7 7 7.00 (0.00) 0.00 (0.00) 234 21 20 20.00 (0.00) 0.50 (0.02)
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5 Conclusions

In this work we have proposed an extended Beam-ACO algorithm—being a
hybrid between ant colony optimization and beam search—for the TSALBP-1
problem. The results showed that our algorithm was able to improve the best
known solutions in 128 out of 269 cases.
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Abstract. Graph vertex colouring can be defined in such a way where
colour assignments are substituted by vertex contractions. We present
various hyper-graph representations for the graph colouring problem all
based on the approach where vertices are merged into groups. In this
paper, we show this provides a uniform and compact way to define al-
gorithms, both of a complete or a heuristic nature. Moreover, the rep-
resentation provides information useful to guide algorithms during their
search. In this paper we focus on the quality of solutions obtained by
graph colouring heuristics that make use of higher order properties de-
rived during the search. An evolutionary algorithm is used to search
permutations of possible merge orderings.

1 Introduction

The graph colouring problem is an important problem from the class of non-
deterministic polynomial problems. It has many applications in the real world
such as scheduling, register allocation in compilers, frequency assignment and
pattern matching. To allow these applications to handle larger problems, it is
important fast algorithms are developed. Especially as high-performance com-
puting is becoming more readily available, it is worthwhile to develop algorithms
that can make use of parallelism. However, several exact end heuristic algorithms
are developed to solve the graph vertex colouring problem, there is no best, they
performance always depend on the problem. Here, we introduce some represen-
tation of the graph colouring and heuristics based on these representations which
are suitable to handle larger graphs and support parallelism.

A graph G = (V, E) consists of a set of vertices V and a set of edges E ⊆ V ×V
defines a relation over the set of vertices. We let n = |V |, m = |E|, then d(v)
denotes the degree of a vertex v ∈ V and A is the adjacency matrix of G. A
colouring c of a graph is a map of colours to vertices (c : V → C) where C is the
set of colours used. There can be several such mappings, which can be denoted
if necessary (e.g. c1, c2, . . . ). A colouring c is a k-colouring iff |C| = k. It is a
proper or valid colouring if for every (v, w) ∈ E : c(v) �= c(w). In general, when
we refer to a colouring we mean a valid colouring, unless the context indicates
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otherwise. The chromatic number χ(G) of a graph G is the smallest k for which
there exists a k-colouring of G. A colouring algorithm makes colouring steps,
i.e., it progressively chooses an uncoloured vertex and then assignes it a colour.
Let t ∈ {1, . . . , n} be the number of steps made.

The graph colouring approaches discussed here will construct a colouring for
a graph by progressively contracting the graph. This condensed graph is then
coloured. Moreover, they allow us to extract heuristic information to better
guide the search. We implement a number of heuristics and combine these with
particular sequential contraction algorithms. The sequence in which nodes and
multiple-nodes are merged defines a search space in terms of permutations. Using
an evolutionary algorithm we search that space.

2 Representing Solutions to Graph Colouring

We define merge operations to perform contraction of the original graph and
subsequent contractions. A merge operation takes two unconnected vertices from
a graph G = (V, E) and produces a new graph G′ = (V ′, E′) where these vertices
become one hyper-vertex. If edges exist between another vertex and both the
original vertices, then these become one multiple-edge. If v1, v2 ∈ V are merged
to {v1, v2} ∈ V ′ and both (v1, u), (v2, u) ∈ E then ({v1, v2}, u) ∈ E′ is called
a multiple-edge. If only one of (v1, u) or (v2, u) ∈ E then we keep calling that
one an edge. Examples of merge operations are shown in Figure 1. The merge
operation is applied similarly to hyper-vertices.

By repeating merge operations we will end up with a complete graph. If during
each merge operation we ensure only hyper-vertices and vertices are merged that
have no edges between them, we then can assign all the vertices from the original
graph that are merged into the same hyper-vertex one unique colour. The number
of (hyper-)vertices in the final contracted graph corresponds to the number of
colours in a valid colouring of the original graph. As Figure 1 shows, the order in
which one attempts to merge vertices will determine the final colouring. Different
colourings may use a different number of colours. Important to note is, if two
vertices need to be coloured differently in every optimal colouring, merging them
will prevent reaching an optimal colouring. We will investigate a number of
different strategies for making choices about which vertices to merge. Note, the
colouring in the example is only to follow the process. In reality, the actual
assigning of colours happens after the whole merge process finishes.

Graph colouring solvers make use of constraint checks during colouring. The
adjacency checks to verify if assigned colourings are valid play a key role in the
overall performance (see [1,2]). The number of checks depends on the represen-
tation of the solution, the algorithm using the representation and the intrinsic
difficulty of the problem. Graph colouring problem are known to exhibit an in-
crease in difficulty in the so-called phase transition area [3]. In our experiments
we will test several algorithms on problems in this area. The area is defined
by the edge density of the graph where by increasing the density we arrive at
the phase transition when problems, given a certain k, become unsolvable. It is
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merge(v2,v6)

merge(v3,v5)
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Fig. 1. Demonstration of the result of two different merge orders of rows: P1 =
v1, v4, v2, v5, v3, v6 and P2 = v1, v4, v2, v6, v3, v5. The double-lined edges are multiple-
edges and double-lined nodes are multiple-nodes. The P1 yields a 4-colouring (c) while
P2 achieves a 3-colouring (e).

known, this point coincides with a significant increase in effort required to solve
these problem instances.

To support the merge operations introduced above we define several data
structures, each of which has its benefits when combined with different ap-
proaches to deciding in which order to perform the merge operations. We call
these data structures the first order structures. Beside supporting the merge op-
erations, these first order structures allow information to be derived that can aid
in guiding search algorithms. That information will be stored in secondary order
structures. Third order structures can be derived by summarising the second
order structures.

First order structures are the cells of the representation matrices. They define
the neighbourhood relation of the hyper-vertices for the binary and weighted
relation for the integer models. Figure 2 shows four different representations
in relation to an example graph and its adjacency matrix. An ri refer to an
appropriate row of the representation matrices describe relations of the normal
or merged vertices. The Binary Merge Table (BMT) simply keeps track of the
edges after merges by collapsing rows and keeping 1s from all the rows. The
Integer Merge Table (IMT) also counts the number of edges that were collapsed.
The Binary Merge Square (BMS) and Integer Merge Square (IMS) are similar
to their table variants, but the merge operations become more efficient over time
as columns belonging to the collapsed edges are discarded.

Secondary order structures are the summary of the first order structures, i.e.,
the rows and columns in the representation matrices respectively. They form
four vectors. Since, sequential colouring algorithms take steps, and the coloured
and uncoloured part of the graphs are changing step-by-step it is worth to define
these structures separately to the coloured/merged and uncoloured/non-merged
sub-graphs. To identify these partial sums we use col and unc superscripts. We
can obtain the sum of the rows and columns of binary merge matrices from
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v1

v2

v4

v5

v6

v3

(a) Example graph

{v1, v4} v2 v3 v5 v6

{r1, r4} 0 1 1 1 1
r2 1 0 1 0 0
r3 1 1 0 0 1
r5 1 0 0 0 1
r6 1 0 1 1 0

(b) Binary Merge Square

v1 v2 v3 v4 v5 v6

{r1, r4} 0 1 1 0 1 1
r2 1 0 1 0 0 0
r3 1 1 0 1 0 1
r5 0 0 0 1 0 1
r6 1 0 1 0 1 0

(c) Binary Merge Table

v1 v2 v3 v4 v5 v6

r1 0 1 1 0 0 1
r2 1 0 1 0 0 0
r3 1 1 0 1 0 1
r4 0 0 1 0 1 0
r5 0 0 0 1 0 1
r6 1 0 1 0 1 0

(d) Adjacency matrix

{v1, v4} v2 v3 v5 v6

{r1, r4} 0 1 2 1 1
r2 1 0 1 0 0
r3 2 1 0 0 1
r5 1 0 0 0 1
r6 1 0 1 1 0

(e) Integer Merge Square

v1 v2 v3 v4 v5 v6

{r1, r4} 0 1 2 0 1 1
r2 1 0 1 0 0 0
r3 1 1 0 1 0 1
r5 0 0 0 1 0 1
r6 1 0 1 0 1 0

(f) Integer Merge Table

Fig. 2. An example graph (a) with its adjacency representation (d) and four different
representations shown after perform the same merge (rows r1 and r4 are merged)

their integer pairs by counting their non-zero elements. Hence, the example in
Figure 3 shows only the left side of the sub-matrices sum the columns and the
right side sum the non-zero elements to get the relevant summary in the binary
matrix. This is the same for the columns, where the top vector is the sum of the
rows and the bottom is the number of non-zeros. The second order structures

7

v1

v2

v4

v5

v6

v3

(a)

(b)

r1 0 1 1 0 0 1
r2 1 0 1 0 0 0
r3 1 1 0 1 0 1
r4 0 0 1 0 1 0
r5 0 0 0 1 0 1
r6 1 0 1 0 1 0

v1  v2  v3  v4  v5  v6 0 1 2 1 1 2
5 0 1 2 0 1 1 4

0 1 1 1 1 2

v1  v2  v3  v4  v5  v6

{r1,r4}

2 0 0 0 1 0 1 2r5

v5 v3

v2v6

{v1,v4 }

(c)

(d) 1 1 2 1 2
5 0 1 2 1 1 4

1 1 1 1 2

{r1,r4}

2 0 0 0 0 1 2r5

v5 v3

v2v6

{v1,v4 }

{v1,v4}  v2  v3   v5  v6

6 6

7 (b)

(c)

(d)

(a)

Fig. 3. The original graph, its induced sub-IMT and then its induced sub-IMS when
colouring is in progress. (a) gives the sum of the degree of the nodes, (b) gives the
number adjacent vertices already assigned a colour, (c) gives the degree of the hyper-
vertex, and (d) gives the number of coloured multiple-edges.
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are denoted by τ , using t,b,l,r indices as subscript to refer to the top, bottom,
left and right vector.

Third order structures are formed by summarising the secondary order struc-
tures. These can be divided into two parts similar to the second order structures
according to the coloured and uncoloured sub-graphs. These structures are de-
noted by ζ. In this study, they will be used in the fitness function of the evolu-
tionary algorithm. The top-left sums the top vector (or the left vector) and the
bottom-right sums the bottom vector (or the right vector). These are shown in
bold font in Figure 3.

3 Combinations of Contraction Algorithms and
Heuristics

Before we introduce heuristics, we first define three abstract sequential algo-
rithms, which allow for a concise defining of existing or novel solvers.

Definition 1 (Sequential contraction algorithm 1 (SCA1))

1. Choose a non-merged/uncoloured vertex v
2. Choose a non-neighbour hyper-vertex/colour-set r to v
3. Merge v to r
4. If there exists a non-merged vertex then continue with Step 1.

Definition 2 (Sequential contraction algorithm 2 (SCA2))

1. Choose a hyper-vertex/colour-set r
2. Choose a non-neighbor non-merged/uncoloured vertex v to r
3. Merge v to r
4. If there exists a non-merged vertex then continue with Step 1.

Definition 3 (Sequential contraction algorithm 3 (SCA3))

1. Choose two vertices/colour-sets (hyper or normal) that can be merged without
violating any constraints

2. Merge them
3. If there exist more hyper-vertices or vertices to merge then continue with

Step 1.

We describe four heuristics; the well known Erdős and DSatur heuristics make
use of the secondary order structures, whereas our other two, DotProd and
Cos, make use of the first order information. The Erdős heuristic uses similar
assumptions as DSatur but in the opposite direction.

DSatur is of type SCA1. Here the choice of colouring the next uncoloured vertex
v is determined by colour saturation degree. As colour saturation is calculated
by observing the colours of neighbouring vertices, it requires O(n2) constraint
checks. However, if we merge the already coloured vertices and use a second
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order structure, we have this information by observing at most the number of
hyper-vertices/colours for v. Hence, O(nkt) constraint checks are required, where
kt is the number of colours used in step t. The bottom second order structure
provide the saturation degree, which gives O(n) computational effort to find the
largest one. Hence, IMT is an appropriate structure for the definition. Here, the
choice for hyper-vertex/colour-set is done in a greedy manner.

Definition 4 (Non-merged/uncoloured vertex choice of the DSaturimt)

1. Find those non-merged/uncoloured vertices which have the highest saturated
degree: S = arg maxu τcol

b (u) : u ∈ V unc

2. Choose those vertices from S that have the highest non-merged/uncoloured-
degree: N = arg maxv τunc

b (v)
3. Choose the first vertex from the set N .

DotProd is based on a novel technique, which is shown to be useful in [4]. Two
vertices of a contracted graph are compared by consulting the corresponding
BMS rows. The dot product of these rows gives a valuable measurement for the
common edges in the graph. Application of the DotProd heuristics to the BMS
representation using SCA2 colouring scheme provides the Recursive Largest First
(RLF) algorithm of Dutton and Birgham [5]. Unfortunately the name RLF is
somewhat misleading, since “largest first” does not say where it is relating to.
The meaning of it differs throughout the literature, but we shall define it exactly
and then generalise this heuristics. The identification schemes introduced pro-
vide a way for the classification of other heuristics with the possibility for well
described comparisons. Here, we introduce a DotProd heuristic that is com-
bined with the BMS representation and the SCA3 type algorithm. We explore
here only this combination, but other combinations are possible.

Definition 5 (Non-merged/uncoloured vertex choice of the
DotProdbms)

1. Find those two vertices (hyper or normal) which have the largest number of
common neighbours: S = arg maxu,v 〈u, v〉 : u, v ∈ V (Gt)

2. Choose the first vertex pair from the set S.

Cos is the second novel heuristic introduced here. It is derived from DotProd

by normalisation of the dot product. As opposed to DotProd, Cos takes in
consideration the number of non-common neighbours as well. In the following
definition we provide an algorithm of type SCA3 that uses the Cos heuristics
to choose the next vector.

Definition 6 (Non-merged/uncoloured vertex choice of the Cosbms)

1. Find those vertices (hyper or normal) that have the largest number of com-
mon neighbours, and that have the fewest constraints: S = argmaxu,v

〈u,v〉
‖u‖‖v‖

2. Choose the first vertex pair from the set S.
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Pál Erdős O(n/ log n) [6, page 245] works as follows. Take the first colour and
assign it to the vertex v that has the minimum degree. Vertex v and its neigh-
bours are removed from the graph. Continue the algorithm in the remaining
sub-graph in the same fashion until the sub-graph becomes empty, then take the
next colour and use the algorithm for the non-coloured vertices and so on until
each vertex is assigned a colour. This approach guarantees O(n/logχ(n)) number
of colours in the worst case. However, exact algorithms has proved limits for the
number of colours used in a colouring which makes the exact analysis possible,
other algorithms without such a limit can shows better performance in several
cases. All representations are suitable as a basis for this heuristic. It uses SCA2,
where the choice for the next target r-th (hyper-)vertex/colour-set for merging
and colouring is greedy.

Definition 7 (Non-merged/uncoloured vertex choice of the Erdősbmt)

1. Choose an uncoloured vertex with minimum uncoloured degree. S =
arg minu τunc

b (u)
2. Choose the first vertex from the set S.

4 Guiding Graph Colouring by Graph Properties

The DotProd and Cos heuristics are perfectly suitable to implement SCA3,
as well as SCA1 and SCA2. Given a merge representation of a graph, we have
to select the two rows of all rows with the maximum DotProd or Cos value.
These two rows are then merged and the procedure continues on the merged
representation matrix in the same fashion. The number of rows decreases by one
in each merge operation, hence the dot products of rows in the t-th step forms
a (n − t) × (n − t) matrix; this is also known as the Gram matrix. In case of
Cos, the Gram matrix becomes the metric tensor of the rows. Since min or max
places are not necessarily unique in the Gram matrices, we need to introduce a
further strategy to select one of them. Here, we use the easiest approach, which
is to take the first one found. This approach uses vertex properties. In other
words local information is used to decide on merges, which then changes graph
properties globally.

SCA3 can be defined in an indirect way, where certain graph properties are
evaluated during the selection of two rows for a merge operation. Here, an anal-
ysis of a supposed merge effect is performed. First, gather these graph properties
into a vector, denote these by ξ. Determine which values are known in advance
for the final merged graph. It is important to know these, because they will be
the goal of the reformulated problem. Then, compute ξ(G0) and ξ(Gn−k). Now,
the “only” task left is to find a path from ξ(G0) to ξ(Gn−k) along the merge
steps in the vector space induced by ξ(Gt).

Figure 4(a) shows an example of how the three largest eigenvalues (λ3 <=
λ2 <= λ1) of At form different paths of 20- and 37-colourings in a three di-
mensional vector space. The start of the path is (λ3, λ2, λ1)[A0]. The path ends
at (λ3, λ2, λ1)[An−k], which are known values. The first value is trivial, because
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A0 = A is given and the last is (−1, −1, k − 1), since the final merged graph
Gn−k is a Kk complete graph on k nodes for BMS. Where k is the number of
colours used in the colouring. Hence, the goal is to reach (−1, −1, χ − 1), which
corresponds to a solution. Analysis of the paths results guidance of colouring
process by following the optimal path.

Consider a simplified example in one dimensional space. Take the BMS rep-
resentation and let ξ(Gt) = λ1(At), i.e.,the spectral radius or spectral norm of
At. If we examine the initial BMS, we can verify that λ1(A0) is greater or equal
than λ1(An−χ) = χ − 1 (see [7]). Due to this fact λ1(At) is decreasing, as is
shown in Figure 4(b).

2
6

10

2610

20

120

Optimal

Random 3

( 1, 1,19)

( 1, 1,36)

(12.2, 12.4, 121.2)

(a) 3D paths of the three largest eigenvalues

 100

 0  50  100  150  200

N
um

be
r 

of
 c

ol
or

s 
us

ed

Coloring steps

19

24

36

Random 1
Random 2
Random 3

SCA3-spectralNorm
Optimal

(b) The spectral norm deepest descent
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Fig. 4. Example of spectral properties of a graph during colouring; all while solving
an equi-partite 20-colourable graph in the peak of the phase transition (p = 0.64)

This path is responsible for determining the colouring and the end of the path
k−1 defines the quality of the colouring. Unfortunately, the ideal path (between
λ1(A0) and χ − 1) is of course unknown; the task of colouring is to find this
path. A colouring path takes n − k colouring steps, that is merges. An optimal
colouring reaches χ, the smallest k-value, resulting the longest step-series, non-
optimal colourings have shorter one as they get stuck when no further merging is
possible, i.e., k > χ. If we take into account the ideal path has the lowest end and
takes the most steps, then it should be below all possible non-optimal colouring
paths from a certain point. We can define a path in advance that follow this
property. A trivial path between the initial point and the end is a linear path,
where λ1(At+1) is derived from λ1(At). The difference λ1(At+1)−λ1(At) should
approximate λ1(A0)−λ1(An−χ))

n−χ . Non-linear paths can be defined by analysis of
more complicated graph properties and their behaviours in terms of spectrals.

To implement SCA3 in an intuitive way we need to re-compute the graph
properties

(
n−t
2

)
times in the t-th merging step. This number can be reduced

considerably by updating only where possible. For the spectral norm this update,
which consists of calculating the spectral norm from the original matrix, is not
available in general. However, efficient approximations of the spectral norm for
symmetric matrices exist [8], for which the updating is feasible. We shall use
the method suggested in [8]: Equation 2.4 will be denoted by Approx1. As the
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optimal path has the lowest end, χ − 1, the aim is to reduce the approximated
spectral norm in each step as much as possible.

5 An Evolutionary Algorithm Based on Merge Models

We embed the heuristics in an evolutionary algorithm (EA). The EA uses the
BMT representation and the SCA1 contraction scheme. The genotype is a per-
mutation of the rows of the BMT. The phenotype is a final BMT, where no rows
can be merged further. Selection of which rows to merge is by an initial random
ordering of all vertices. The strategy for the merging of selected vertices is one
of the DotProd and Cos local heuristics.

An intuitive way of measuring the quality of an individual (permutation) p in
the population is by counting the number of rows remaining in the final BMT.
This equals to the number of colours k(p) used in the colouring of the graph,
which needs to be minimised. When we know the optimal colouring is χ (in
our experiments χ is defined in advance to verify quality), we can normalise the
fitness function to g(p) = k(p) − χ. This function gives a rather low diversity of
fitnesses of the individuals in a population because it cannot distinguish between
two individuals that use an equal number of colours. This problem is called the
fitness granularity problem. We modify the fitness function to allow the use of
first and second order structures introduced in Section 3.

The fitness relies on the heuristic that one generally wants to avoid highly
constraint vertices and rows in order to have a higher chance of successful merges
at a later stage, commonly called a succeed-first strategy. It works as follows.
After the last merge the final BMT defines the groups of vertices with the same
colour. There are k(p)−χ over-coloured vertices, i.e., merged rows. Generally, we
use the indices of the over-coloured vertices to calculate the number of vertices
that need to be minimized (see g(p) above). But these vertices are not necessarily
responsible for the over-coloured graph. Therefore, we choose to count the hyper-
vertices that violate the fewest constraints in the final hyper-graph. To cope
better with the fitness granularity problem we should modify g(p) according
to the constraints of the over-coloured vertices discussed previously. The fitness
function used in the EA is then defined as follows. Let ζunc(p) denote the number
of constraints, i.e., non-zero elements, in the rows of the final BMT that belong
to the over-coloured vertices, i.e., the sum of the smallest k(p) − χ values of the
right second order structure of the uncoloured vertices. This is the uncoloured
portion of the (right-bottom) third order structure. The fitness function becomes
f(p) = g(p)ζunc(p). Here, the cardinality of the problem is known, and used as
a termination criterium (f(p) = 0) to determine the efficiency of the algorithm.
For the case where we do not know the cardinality of the problem, this approach
can be used by leaving out the normalisation step.

Below we show the outline of the evolutionary algorithm. It uses a generational
model with 2-tournament selection and replacement, where it employs elitism
of size one. This setting is used in all experiments. The initial population is
created with 100 random individuals. Two variation operators are used to provide
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offspring. First, the 2-point order-based crossover (ox2) [9, in Section C3.3.3.1]
is applied. Second, a simple swap mutation operator, which selects at random
two different items in the permutation and then swaps. The probability of using
ox2 is set to 0.4 and the probability for using the simple swap mutation is set
to 0.6. These parameter settings are taken from previous experiments [2].

Definition 8 (Evolutionary Algorithm)

1. population = generate initial permutations randomly
2. repeat

– evaluate each permutation p:
– – merge pj − th unmerged vertex v into hyper-vertex r by DotProd or
Cos

– – calculate f(p) = (k(p) − χ)ζunc(p)
– populationxover = xover(population, probxover)
– populationmut = mutate(populationxover, probmut))
– population = select2-tour(population ∪ populationxover ∪ populationmut)

3. until termination condition.

The Erdős heuristic guarantees its performance. We omit this heuristics from
the EA, as we would not be able to guarantee this property once embedded
in the EA. A baseline version of the EA called EA-noheur serves a basis of
the comparison and the DSatur with backtracking as it is a commonly used
reference method. Moreover, as this algorithm performs an exhaustive search it
is useful to find the optimal solutions to problem instances, except for ones with
a large k and with a graph density that positions them in the phase transition.

6 Experiments and Results

The test suites are generated using the well known graph k-colouring generator
of Culberson [10]. It consists of k-colourable graphs with 200 vertices, where k
is set to 3,5,10 and 20. For k = 20, ten vertices will form a colour set, therefore
we do not use any larger chromatic number. The edge density of the graphs
is varied in a region called the phase transition. This is where hard to solve
problem instances are generally found1, which is observed in the results as a
typical easy-hard-easy pattern. The graphs are all generated to be equi-partite,
which means that a solution should use each colour approximately as much as
any other. The suite consists of groups where each group is a k-colouring with
10 unique instances. Using this test set we can ensure a fair comparison of the
algorithms, since this set contains problems from easy to most difficult ones.
Moreover, we would like to avoid comparison on some selected real life problems
where the selection method can determine the outcome of the comparison of the
performance, please see [11].

1 Hardness can only be determined as a function of problem and algorithm; here we
refer to the large amount of empirical evidence reported about these regions.
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Fig. 5. Results of the sequential colouring heuristics; average number of colours through
the phase transition
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Fig. 6. Results of the EA; average number of colours through the phase transition
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We compare three different heuristics embedded in SCA3 with each other
with the two reference heuristics of SCA1 and SCA2, a DSatur and the Erdős
heuristic. The three combinations for SCA3 are max Dot, max Cos and min
λ1-Approx1.

Figure 5 shows the results of all combinations for different values of χ. The
implementations of the linear approximations, which result in the deepest de-
scent SCA3-λ1 algorithms, perform the best except for very sparse graphs, where
the Dot and DSatur heuristic with local decisions performs better. The reason
for the worse performance of the SCA3-λ1 on sparse graphs is the low number
of changes in the norm in the selection of candidate vertices pairs for merging.
Because of the approximation used, several different values become equal, hence
selecting too many candidates. The combination of SCA3 with Cos does not al-
ways perform well, especially not for smaller chromatic numbers; however it can
outperform baseline methods for dense graphs. As the chromatic number and
the edge density increase Cos gets better and can beat all other. DotProd’s
performance lies between that of Cos and the SCA3-λ1 algorithms; its strength
lies with smaller chromatic numbers and sparse graphs.

While sequential algorithms make one run to get their result, EA experiments
are performed several times due to the random nature of the algorithm. To
cope with the increase in runs, a reduced number of instances is selected from
the previous experiments. One set consists of five instances, except for 3 and 5
colourable instances where the set contains ten instances to allow for the low
diversity in results for small chromatic numbers. On each instance we perform
ten independent runs and calculate averages over the total number of runs.

Figure 6 shows the results for the EA with two different heuristics. Also shown
are results for the reference EA without heuristics and the DSatur algorithm.
Similar to the previous experiments, the Cos heuristics performs well, espe-
cially for larger k, and the DotProd is a close second. DSatur is the strongest
algorithm on 3-colourable graphs, where it always finds the optimum number
of colours. However, the backtracking can help on very sparse graphs, DSatur
quickly gets the last position as the chromatic number and hence the edge den-
sity increasing. During the experiments our methods remained below the Erdős
heuristic which has a guaranteed performance in both experiments.

7 Conclusions

In this paper, we used compact representations for intermediate solutions to
graph colouring problems that facilitate contractions of the graph. Together
with the merge operations, they form a good basis for developing efficient graph
colouring algorithms because of three beneficial properties: a significant reduc-
tion in constraint checks, access to heuristics that help guide the search, and a
concise description of algorithms.

We created several combinations of sequential contraction algorithms that
determine the order of merge operations with heuristics that rely on information
derived from the compact representations. Furthermore, we incorporated these
heuristics in an EA. We showed these heuristics are highly successful in achieving
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near optimal solutions to graph colouring instances around the phase transition,
i.e., where difficult to solve problem instances are expected to occur. Compared
to the method DSatur, the evolutionary algorithm performs well on problems
with larger k.
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Abstract. The Berth Allocation Problem (BAP) consists on program-
ming and allocating ships to berthing areas along a quay. The BAP is
modeled as a vehicle routing problem and a recently proposed evolu-
tionary hybrid method denominated PTA/LP is used to solve it. The
PTA/LP combines the Population Training Algorithm with Linear Pro-
gramming to generate improving incoming columns in a column genera-
tion process. The computational results are obtained for a set of instances
proposed in literature and new best known solutions are presented.

1 Introduction

The programming and allocation of ships to berths have a primary impact in the
efficiency of the port operations [1]. A discussion about the decision problems
that appear in a port is presented in [2].

The Berth Allocation Problem - BAP consists of optimally assigning ships to
berthing areas along a quay in a port. The main decision to be made in that
process accomplishes the choice of “where” and “when” the ships shall berth [3].
Managers want to minimize both port and user costs, which are related to the
ships’ service time. The BAP objective is usually to minimize the total service
time of all ships.

The BAP can be modeled as a discrete problem considering the quay as a finite
set of berths. In this case, the berths can be described as fixed length segments,
or points if the spatial dimension is ignored [1,3]. Continuous models consider
that ships can berth anywhere along the quay, where ships are of different lengths
and the quay capacity varies dynamically.

In this paper, the problem is treated in discrete form considering the minimiza-
tion of the time spent by ships arriving in a port, allocating and programming
the ships mooring to berths, aiming to reduce the permanence time for ships
inside the port. The remainder of the paper is organized as follows. Section 2
presents a brief literature review. The problem modeling is presented in Section
3. Section 4 describes the proposed model and the methods used to solve the
BAP. Computational results are presented in Section 5, and the conclusions are
summarized in Section 6.
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2 Literature Review

Cordeau et al. [3] presents a Tabu Search based heuristic to solve two different
models for a discrete case of BAP. Only small instances could be solved op-
timally and the proposed Tabu Search always yields an optimal solution. The
proposed heuristics could handle the various features of real-life problems, in-
cluding time windows and favorite and acceptable berthing areas. The objec-
tive function could easily accommodate a weighted sum of the ship’s service
times.

Filho and Lorena [4] applied a heuristic column generation approach to graph
coloring. They describe the principles of their Constructive Genetic Algorithm
(CGA) and give a column generation formulation for the problem. The CGA
is used to generate the initial columns and also to solve the sub-problems. The
column generation is performed as long as the CGA finds columns with negative
reduced costs. The master problem is solved by CPLEX [5].

Recently, Puchinger and Raidl [6] proposed new integer linear programming
formulations for the three-stage two-dimensional bin packing problem. Based
on these formulations, a branch-and-price algorithm was developed with a fast
column generation performed by applying a hierarchy of four methods: a greedy
heuristic, an evolutionary algorithm, a restricted pricing problem using CPLEX,
and finally the complete pricing problem also using CPLEX.

3 BAP Modeling

This work considers the Berth Allocation Problem (BAP) modeled as a Multi-
Depot Vehicle Routing Problem with Time Windows (MDVRPTW) [7,3] (dis-
crete formulation). The ships are seen as customers, and the berths as depots
at which one vehicle is located. There are m “vehicles”, one for each depot, and
each vehicle starts and finishes its tour at its depot. The ships are modeled as
vertices in a multi-graph and every depot is divided into an origin and a des-
tination vertices. The time windows can be imposed on every vertex, and its
correspond to the availability period of the berth at the origin and destination
vertices.

The model is given by a multi-graph Gk = (V k, Ak), ∀k ∈ M where V k =
N ∪ {o(k), d(k)} and Ak ⊆ V k x V k. The input data are given by:

– N : set of ships, n = |N |;
– M : set of berths, m = |M |;
– tki : handling time of ship i at berth k ;
– ai: arrival time of ship i ;
– sk: start of availability time of berth k ;
– ek: end of availability time of berth k ;
– bi: upper bound for service time window for ship i ;
– vi: the value (cost) of service time for ship i.
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The model variables are:

– xk
ij ∈ {0, 1}, k ∈ M , (i,j) ∈ Ak; xk

ij = 1 if the ship j is scheduled after ship i
at berth k ;

– T k
i , k ∈ M , i ∈ N : is the berthing time of ship i at berth k ;

– T k
o(k), k ∈ M : is the starting operation time of berth k (the time when the

first ship moors at the berth);
– T k

d(k), k ∈ M : is the ending operation time of berth k (the time when the
last ship departs from the berth);

– Mk
ij = max{bi + tki − aj ,0}, k ∈ M , i and j ∈ N .

The BAP model is as follows:

Minimize:

Z =
∑
i∈N

∑
k∈M

vi

⎡
⎣T k

i − ai + tki
∑

j∈N∪{d(k)}
xk

ij

⎤
⎦ (1)

Subject to:
∑
k∈M

∑
j∈N∪{d(k)}

xk
ij = 1 ∀i ∈ N (2)

∑
j∈N∪{d(k)}

xk
o(k)j = 1 ∀k ∈ M (3)

∑
i∈N∪{o(k)}

xk
i,d(k) = 1 ∀k ∈ M (4)

∑
j∈N∪{d(k)}

xk
i,j−

∑
j∈N∪{o(k)}

xk
j,i = 0 ∀k ∈ M, ∀i ∈ N (5)

T k
i + tki − T k

j ≤ (1 − xk
i,j)M

k
i,j ∀k ∈ M, ∀(i, j) ∈ Ak (6)

T k
i ≥ ai ∀k ∈ M, ∀i ∈ N (7)

T k
i + tki

∑
j∈N∪{d(k)}

xk
j,i ≤ bi ∀k ∈ M, ∀i ∈ N (8)

T k
o(k) ≥ sk ∀k ∈ M (9)

T k
d(k) ≤ ek ∀k ∈ M (10)

xk
i,j ∈ {0, 1} ∀k ∈ M, ∀(i, j) ∈ Ak (11)

The objective function minimizes the elapsed time since the ships incoming,
mooring and handling, considering a respective service cost. Constraints (2) state
that each ship is only once assigned to one berth. Constraints (3) and (4) ensure
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that a ship will be the first handling by each berth and another will be the last.
The flow conservation is given by constraint (5) and constraint (6) calculates
the ships berthing time. Only the valid arches Ak (∀k ∈ M) are considered in
constraint (6), because some ships cannot be assisted by certain berth, because
for instance, the type of available equipment in berth cannot be appropriate
for handling some load types. The instance’s data shown the berth capacity to
attend the ships (handling time is different of zero). Constraints (7) and (8)
state that the berthing time is posterior to the ship arrival time and completion
time happens before the ship’s time limit (time window). Constraint (9) and
(10) ensure the non time windows violation in berths, and constraint (11) sets
that decision variables xk

i,j will be binary.

4 The PTA/LP Method

Initially proposed by Mauri and Lorena [8], the PTA/LP is a heuristic method
based on applying the Population Training Algorithm (PTA) and Linear Pro-
gramming (LP) through the Column Generation technique. The PTA and LP
are applied in an interactive way. The PTA uses the information of dual variables
in a LP relaxation to generate improved incoming columns (low cost and good
covering of the ships) in a column generation process. The LP relaxation is used
for solve a Set Partitioning Problem (SPP) formed by these columns. The SPP
is formulated as follows:

Minimize:

Z∗ =
p∑

j=1

cjxj (12)

Subject to:

p∑
j=1

aijxj = 1 i = 1, ..., n (13)

xj ∈ {0, 1} ; j = 1, ..., p (14)

The BAP is modeled as a matrix constructing with columns representing
berths and lines the ships. Each element aij ∈ {0, 1}, i ∈ N = 1..n and j ∈
P = {1..p}. n is the number of ships (lines) and p the number of generated
columns. aij = 1 if the column j attends the ship i, and 0 otherwise. This is
a classic formulation constantly used in several works found in the literature.
The cj represents the cost of column j (defined in eq. 16) and xj is equal to 1 if
column j belongs to the problem solution and 0 otherwise.

In BAP specific case, each berth has its own features, and sometimes a ship
type could not be attended by a berth. Just a berth (or none) of each available
“type” in quay must be used (each column belonging to the final problem solution
should represent a different berth, without repetitions). Then, a new constraint
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must be inserted in SPP (eq. 15) to forming a set partitioning problem with an
additional constraint (SPP+).

p∑
j=1

bijxj ≤ 1 i = 1, ..., m (15)

Each element bij ∈ {0, 1}, i ∈ M = {1..m} and j ∈ P = {1..p}. m is the
number of available berths, and bij = 1 if the column j represents the berth i.

Now seeing in an evolutionary computation context, each column is repre-
sented through an “individual” formed by integers, where the first position indi-
cates the berth referring to a column, and the other positions represent the ships
attended by this berth (column). For the columns’ cost calculation, the time win-
dows constraints in the BAP model (7-10) are relaxed and moved to objective
function considering weight factors (vector w = [w0, w1, w2]). This approach is
used to facilitate and accelerate the generation of new columns, because the
computational cost (time) to generate the columns with the restrictions (7-10)
is higher. The columns are evaluated in a relaxed way and its cost will receive a
high weight for violations in time windows. The cost of each column (individual)
is given by

ck = w0

∑
i∈Bk

vi

(
T k

i − ai + tki
)

+ (16)

w1
∑

i∈Bk

(
max

(
0, ai − T k

i

)
+ max

(
0, T k

i + tki − bi

))
+

w2

(
max

(
0, sk − T k

o(k)

)
+ max

(
0, T k

d(k) + ek
))

The generation of all necessary columns to build and solve SPP+ (eq. 12-
15) can be a challenge. So, the LP relaxation is used with PTA to generate a
suitable set of columns for commercial solvers (a number of columns to be solved
by CPLEX - see [5]). More details on PTA/LP can be seen in [9] and [10].

4.1 The Population Training Algorithm

The Population Training Algorithm - PTA is a kind of evolutionary technique
first employed in [11] and derived from the Constructive Genetic Algorithm
(CGA) proposed by Lorena and Furtado [12]. The CGA has a number of in-
novative features compared to traditional genetic algorithms. These include a
“ranked” population of dynamic size composed of “schemata” and “structures”.
The schemata and structures are directly evaluated in a common basis, using a
double fitness process, called fg-fitness.

The schemata are not used in PTA and the fg-fitness will be performed by
heuristics. An individual is considered well adapted if it cannot be better regard-
ing the employed training heuristic. The adaptation in the population training
is, therefore, used to guide the search to promising areas.

The two functions used in evolutionary training are defined by g(k) = “qual-
ity” of column (individual) k (eq. 19), and f(k) = Best g(k′)|k′ ∈ Neighbor-
hood(k). The f(k) value is obtained through training heuristic (Fig. 3) and the
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evolutionary process is developed privileging the individuals presenting small
differences [g(k) − f(k)] and small g(k), assigning to them the following ranks :

δ(k) = d × [gmax − g(k)] − [g(k) − f(k)] (17)

gmax is the cost of worst individual (column) created in initial population and
d is a constant percentage of gmax. The population is dynamically controlled by
an evolution parameter denominated α, and updated as:

α = α + Step × PS × δbst − δwst

RG
(18)

Step is a constant that controls the evolutionary process speed and PS is the
current population size. (δbst −δwst) is the variation among the ranks of the best
and worst individuals, respectively, and RG is an estimated number of remaining
generations to finish the process.

The parameter α is compared to the ranks (eq. 17), and if α ≥ δ(k) the
individual k is eliminated from the population. The population at the evolution
time α is dynamic in size and can be emptied during the process.

1. CREATE (m empty berths);

2. CREATE (a list L with all the ships);

3. ORDER (the list L by ships incoming time);

4. FOR (each ship j in L, j = 1,2,...,n) DO

5. SELECT (a berth i, i = 1,2,...,m);

6. IF (the berth i was unable to handling the ship j)

7. RETURN (to step 5);

8. ELSE

9. ASSIGN (the ship j to berth i);

10. END-IF;

11. END-FOR;

Fig. 1. Distribution heuristic

The initial population is generated through two heuristics: distribution heuris-
tic and programming heuristic. The distribution heuristic attributes the ships to
the berths. This heuristic is based on the distribution heuristic presented by
Mauri and Lorena [13] and the FCFS-G heuristic presented by Cordeau et al.
[3]. The programming heuristic makes the ships schedule in the berths. The
distribution heuristic runs for “initial population size” times.

The distribution heuristic creates initially m empty berths. The n ships are
organized by incoming order on port and distributed to the berths in a random
way. In this process the selected berth must always be able to assist the selected
ship. This heuristic ensures that each ship will be assigned to a berth that must
be able to attend it. The berthing times may present overlapping and/or time
windows violations, for ships or berths. The Figure 1 describes the distribution
heuristic.
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1. GIVEN (any column k)

2. FOR (each ship i assigned to k) DO

3. Tk
i =

{
max(ai, s

k), i = 1
max(ai, T

k
i−1 + tki−1), i > 1

4. END-FOR;

5. CALCULATE (ck,g(k),f(k) and δ(k))

Fig. 2. Programming heuristic

In programming heuristic the berthing time for each ship and the solution ob-
jective function of column k (ck) are computed. The functions g(k) and f(k) and
rank δ(k) are also computed. The Figure 2 presents the programming heuristic.

A simple local search heuristic is used as training function f(k), and several
alternative individuals (columns) in a neighborhood are evaluated. This heuristic
is described in Figure 3.

1. GIVEN (any column k);

2. k’ ← k;

3. f* = g(k’)

4. FOR (neighborhood size times)

5. i ← any ship attended by column k’;

6. j ← another ship attended by column k’;

7. CHANGE (the attendance sequence for ships i and j);

8. EXECUTE (the programming heuristic for column k’);

9. IF (g(k’) < f*);

10. f* ← g(k’);

11. END-IF;

12. END-FOR;

13. f(k) ← f*;

Fig. 3. Training heuristic

The used mutation is also based in a local search implemented through a
simple change of the handling positions of two ships (randomly selected) assisted
by a column (individual). This process is described in Figure 4.

1. GIVEN (any column k);

2. i ← any ship attended by column k;

3. j ← another ship attended by column k;

4. CHANGE (the attendance sequence for ships i and j);

5. EXECUTE (the programming heuristic for column k);

Fig. 4. Mutation

The crossover generates new individuals as follows: two individuals are se-
lected (base and guide) and a new individual is created similar to the base. Each
ship assisted by the guide individual is inserted in the new individual if the cor-
responding berth can attend it. The handling sequence of the new individual



A Hybrid Column Generation Approach for the Berth Allocation Problem 117

1. GIVEN (a base column k);

2. GIVEN (a guide column k’);

3. k’’ ← clone(k);

4. FOR (each ship i attended by column k’) DO

5. IF (the berth referring to column k’’ was able to attend the ship i)

6. INSERT (the ship i in column k’’);

7. END-IF;

8. END-FOR;

9. ORDER (the attendance sequence for column k’’);

10. EXECUTE (the programming heuristic for column k’’);

11. INSERT (the column k’’ in population);

Fig. 5. Crossover

1. CREATE (an initial population);

2. WHILE (the generation maximum number not be reached)

3. SELECT (a base individual);

4. SELECT (a guide individual);

5. k ← CROSSOVER (base,guide);

6. IF (rand() < mutation probability) MUTATION (k); END-IF;

7. CALCULATE (δ(k));

8. IF (δ(k) > α) INSERT (k in population); END-IF;

9. ORDER (the population by the individuals rank);

10. UPDATE (α);

11. FOR (every k ∈ population) DO

12. IF (δ(k) ≤ α) ELIMINATE (k); END-IF;

13. END-FOR;

24. END-WHILE;

Fig. 6. PTA algorithm

is ordered by the ships’ arrival time on the port. The crossover is presented in
Figure 5.

These operators are enclosed to PTA and its pseudo-code is shown in Figure
6. It is interesting to notice that using these processes the PTA will form pop-
ulations of several sizes, guided by the objective of selecting low cost columns
with an enough covering of the ships. The best columns should include a varied
number of ships. This fact is featured by using the training heuristic that will
guide the evolutionary process.

4.2 PTA and LP Interaction

The interaction of PTA with LP is made through the fitness function (function
g) of the individuals in PTA. This function is defined using the dual variables
of LP. The function g is defined as follows:
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g(k) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ck
n∑

i=1
λiaik+

m∑
i=1

λibik

for

(
n∑

i=1
λiaik +

m∑
i=1

λibik > 0
)

ck for

(
n∑

i=1
λiaik +

m∑
i=1

λibik ≤ 0
) (19)

ck is the cost of column k (eq. 16) and λi is the dual variable corresponding to
constraint i. Using the concepts of the column generation technique, the reduced
cost of column k (θk) inserted in SPP+ can be calculated through the following
equation:

θk = ck −
(

n∑
i=1

λiaik +
m∑

i=1

λibik

)
(20)

We can observe through equations (19) and (20) that for negative costs (θk <
0) the value of function g will be situated inside of the interval [0, 1]. Therefore,
the training heuristic that defines the corresponding function f values (best g
in a neighborhood) will assign small differences (g - f ) for columns that have
negative reduced costs. For positive costs (θk ≥ 0) the value of the g function will
be the respective cost (a “high” value). So, the population is indirectly trained for
individuals with negative reduced costs, improving the ship’s covering for SPP+,
avoiding the generation of an excessive number of columns and consequently
speeding up the process of column generation. The Figure 7 presents the pseudo-
code of PTA/LP.

1. CREATE (an initial set of columns);

2. SOLVE (LP);

3. FOR (iterations number or maximum number of columns are not reached)

4. EXECUTE (PTA);

5. REMOVE (invalid columns);

6. CALCULATE (reduced cost for new columns);

7. ADD (columns with negative reduced cost);

8. SOLVE (LP);

9. END-FOR;

10. CONVERT (LP for ILP);

11. SOLVE (ILP);

Fig. 7. PTA/LP algorithm

In PTA/LP, an initial set of columns addressed to the problem is randomly
created. This set must contain columns that form a feasible solution for SPP+.
These columns are generated running the distribution heuristic (Fig. 1) followed
by the programming heuristic (Fig. 2) for each column. The solution formed
by these columns will be probably invalid, because the columns can present
time windows violations. However, the columns with high costs (due to the
weights) will be removed from new SPP+ solutions when improved columns
were generated by PTA.
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A SPP+ is formed by the initial set of columns and the LP relaxation is solved
by CPLEX. New columns are generated through PTA considering the values of
the dual variables to build the fitness functions. The valid columns (that do
not present violations in time windows) that present negative reduced costs are
added to current SPP+ and it is solved again through the LP relaxation. These
processes are repeated by a certain number of iterations or while a maximum
number of generated columns is not reached.

The final SPP+ is converted to an integer linear problem and solved by
CPLEX (through the CPLEX callable library - see [5]). A feasible solution for
SPP+ is obtained, and this solution should be valid and closed of optimal for
the BAP model (eq. 1-11).

5 Computational Experience

Several experiments were performed over 30 different instances (60 ships and 13
berths). These instances were randomly generated by Cordeau et al. [3]. All the
computational tests were accomplished in a PC with AMD Athlon 64 3500 of
2.2 GHz processor with 1GB of RAM and the code was implemented in C++.

Table 1. PTA/LP details

Instance Number of SPP+ SPP+ Processing time (s)
name generated columns solved by LP solved by ILP PTA/LP ILP Total

i01 26664 1409.00 1409 72.14 2.47 74.61
i02 12752 1261.00 1261 58.92 1.83 60.75
i03 70000 1129.00 1129 94.62 40.83 135.45
i04 54612 1302.00 1302 103.16 7.02 110.17
i05 70019 1207.00 1207 72.20 52.50 124.70
i06 25990 1261.00 1261 74.22 4.12 78.34
i07 70023 1279.00 1279 86.73 27.47 114.20
i08 70005 1299.00 1299 48.77 8.30 57.06
i09 37846 1444.00 1444 91.86 4.61 96.47
i10 70005 1213.00 1213 61.81 37.59 99.41
i11 43507 1369.00 1369 95.34 4.00 99.34
i12 18508 1325.00 1325 77.39 3.30 80.69
i13 70017 1360.00 1360 62.55 27.39 89.94
i14 26221 1233.00 1233 69.05 4.91 73.95
i15 70002 1295.00 1295 71.28 2.91 74.19
i16 30063 1365.00 1365 169.81 0.55 170.36
i17 70033 1283.00 1283 32.89 13.67 46.58
i18 36108 1345.00 1345 81.78 2.23 84.02
i19 16135 1367.00 1367 122.00 1.19 123.19
i20 20528 1328.00 1328 74.25 8.05 82.30
i21 48386 1341.00 1341 103.52 4.56 108.08
i22 54140 1326.00 1326 104.17 1.20 105.38
i23 70010 1266.00 1266 41.59 2.12 43.72
i24 70008 1260.00 1260 75.81 3.09 78.91
i25 41210 1376.00 1376 95.09 1.48 96.58
i26 70011 1318.00 1318 70.00 31.11 101.11
i27 37022 1261.00 1261 77.38 5.48 82.86
i28 70004 1360.00 1360 51.52 1.39 52.91
i29 70001 1280.00 1280 196.36 7.00 203.36
i30 7837 1344.00 1344 69.62 1.39 71.02

Average 48256 1306.87 1306.87 83.53 10.46 93.99
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Table 2. Comparison against other methods

Instance TS CPLEX PTA/LP Improvements (%)
name Z Z Gap Z* A B

i01 1415 - - 1409 0.43 -
i02 1263 2606 3.82 1261 0.16 106.66
i03 1139 2565 4.00 1129 0.89 127.19
i04 1303 4353 8.62 1302 0.08 234.33
i05 1208 2672 4.89 1207 0.08 121.38
i06 1262 - - 1261 0.08 -
i07 1279 2887 4.73 1279 0.00 125.72
i08 1299 5177 11.69 1299 0.00 298.54
i09 1444 - - 1444 0.00 -
i10 1212 - - 1213 -0.08 -
i11 1378 - - 1369 0.66 -
i12 1325 3206 5.48 1325 0.00 141.96
i13 1360 - - 1360 0.00 -
i14 1233 - - 1233 0.00 -
i15 1295 4672 9.77 1295 0.00 260.77
i16 1375 4320 8.97 1365 0.73 216.48
i17 1283 - - 1283 0.00 -
i18 1346 3681 6.94 1345 0.07 173.68
i19 1370 2400 3.04 1367 0.22 75.57
i20 1328 - - 1328 0.00 -
i21 1346 - - 1341 0.37 -
i22 1332 3489 7.31 1326 0.45 163.12
i23 1266 - - 1266 0.00 -
i24 1261 4867 10.13 1260 0.08 286.27
i25 1379 1993 2.67 1376 0.22 44.84
i26 1330 2520 3.62 1318 0.91 91.20
i27 1261 3209 5.70 1261 0.00 154.48
i28 1365 - - 1360 0.37 -
i29 1282 4809 9.43 1280 0.16 275.70
i30 1351 - - 1344 0.52 -

Average 1309.67 3495.65 6.52 1306.87 0.21 170.46

The control parameters used by PTA/LP are presented as follows. The initial
population size was set to 10; the Step parameter was set to 0.001; the maximum
number of generations was 70; the base percentage and the mutation probability
was set to 10 and 60 respectively; the neighborhood size was set to 6, and the
parameter d was set to 0.01; the maximum number of columns was limited to
70000, and the iterations number was set to 10000. In all of the experiments
the values of gmax were obtained from the largest g evaluation on individuals
generated in the initial population. The initial value of α was set to 0 and the
weights were set to w = [1,10,10].

The Table 1 presents some details of the PTA/LP performance. The solution
value of the last SPP+ (formed by all the generated columns) was the same
when solved by LP and ILP. This fact indicates that optimal solutions are found
for the SPP+ formed by the generated columns subset (these solutions should
be close of the original problems optimal). The interaction time for PTA and LP
and the time for final SPP+ resolution through ILP were relatively low resulting
in a competitive total time of processing for PTA/LP.

In Table 2 the column “A” presents the improvement obtained by PTA/LP
over Tabu Search (TS). The column “B” presents the improvement of PTA/LP
over CPLEX. The solutions obtained by PTA/LP were compared against the
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best known solutions for the used instances. These best solutions were obtained
through a Tabu Search heuristic presented in [3]. Besides, the CPLEX 10.0.1
[5] was also used in an isolated way to solve the model described in Section 3.
The CPLEX was unable to find solutions for several instances (see Table 2).
The CPLEX and Tabu Search, respectively, spent 1 hour (3600 seconds) and
approximately 120 seconds of processing time for solving each instance [3], while
PTA/LP spent an average of 93.99 seconds for each instance. This fact shows
the PTA/LP competitiveness over Tabu Search and CPLEX.

6 Conclusions

This work presented a new hybrid column generation technique to solve the BAP.
The PTA integrated with a traditional column generation technique solves col-
umn generation sub-problems in an implicit way. The definition of the PTA
fg-fitness using dual variables information is the essential feature for PTA/LP
performance. The computational results were very good and obtained in reason-
able processing times compared against the Tabu Search and CPLEX.

The proposed approach doesn’t guarantee to find of optimal solutions for
BAP, because the column generation sub-problem was solved through a heuristic
method. However, the results show good quality solutions, which are probably
close to the optimal, suggesting the application to real problems of Brazilian
ports and other similar problems.
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Abstract. The Prize Collecting Traveling Salesman Problem (PCTSP)
can be associated to a salesman that collects a prize in each city visited
and pays a penalty for each city not visited, with travel costs among the
cities. The objective is to minimize the sum of travel costs and penalties,
while including in the tour enough cities to collect a minimum prize.
This paper presents one solution procedure for the PCTSP, using a hy-
brid metaheuristic known as Clustering Search (CS), whose main idea is
to identify promising areas of the search space by generating solutions
and clustering them into groups that are then explored further. The val-
idation of the obtained solutions was through the comparison with the
results found by CPLEX.

1 Introduction

This paper presents a new hybrid metaheuristic to solve the Prize Collecting
Traveling Salesman Problem (PCTSP). The PCTSP is a generalization of the
Traveling Salesman Problem (TSP), where a salesman collects a prize pi in each
city visited and pays a penalty γi for each city not visited, considering travel
costs cij between the cities. The problem is to minimize the sum of travel costs
and penalties paid, while including in the tour enough cities to collect a minimum
prize (pmin), defined a priori. In this tour, each city can be visited at most one
time.

The solution of PCTSP is difficult due to a large number of possible solutions.
Since the PCTSP generalizes the TSP it is also a NP-hard problem, as the TSP
is a particular case of PCTSP where the minimum prize is the same as the sum
of prizes of all nodes.

In this paper, the PCTSP is solved using a hybrid metaheuristic, known as
Clustering Search (CS), which was proposed by Oliveira and Lorena [1]. The CS
consists of detecting promising areas of the search space using an algorithm that
generates solutions to be clustered. These promising areas may then be explored
through local search methods as soon as they are discovered. The algorithm used
to generate the solutions was a method combining Greedy Randomized Adaptive
Search Procedure (GRASP) [2] and Variable Neighborhood Search (VNS) [3].
� The authors acknowledge CNPq by partial research support.
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The commercial solver CPLEX [4] has been used to solve the formulation of
the PCTSP, in order to validate the computational results of CS algorithm.

The remainder of the paper is organized as follows. Section 2 reviews previous
works about PCTSP. Section 3 describes the metaheuristic that was used in this
paper, and section 4 present the CS algorithm applied to PCTSP. Section 5
presents the computational results and section 6 concludes the paper.

2 Literature Review

The PCTSP was introduced by Egon Balas [5,6] as a model for scheduling the
daily operations of a steel rolling mill. The author presented some structural
properties of the problem and two mathematical formulations.

Fischetti and Toth [7] developed several bounding procedures, based on dif-
ferent relaxations. A branch and bound algorithm was also developed that was
applied to small size problems.

Goemans and Williamson [8] provided a 2-aproximation procedure to a ver-
sion of the PCTSP, without the minimum prize constraint. Dell’Amico et al.
[9] developed a Lagrangean heuristic, which uses a Lagrangean relaxation for
generating starting solutions and an Extension and Collapse procedure to seek
improving these solutions.

Chaves and Lorena [10] proposed new heuristics based in the CS to solve the
PCTSP, first using a genetic algorithm as generator of solutions for the clustering
process, and later changing the genetic algorithm for other metaheuristics.

Feillet et al. [11] presents a survey on TSP with profits that include the
PCTSP, identifying and comparing the complexity of different classes of ap-
plications, modelling approaches and exact or heuristic solution techniques. Fur-
thermore, this paper shows that the literature is full of solution algorithms that
prove to be very efficient and effective.

3 Clustering Search

The Clustering Search (CS) algorithm generalizes the Evolutionary Clustering
Search (ECS), proposed by Oliveira and Lorena [1,12], that employs clustering
for detecting promising areas of the search space. It is particularly interesting to
find out such areas as soon as possible to change the search strategy for them. An
area can be seen as a search subspace defined by a neighborhood relationship in
metaheuristic coding space. In the ECS, a clustering process is executed simul-
taneously to an evolutionary algorithm, identifying groups of individuals that
deserve special attention. In the CS, the evolutionary algorithm was substituted
by distinct metaheuristics, such as Simulated Annealing, GRASP, Tabu Search
and others.

The CS attempts to locate promising search areas by framing them by clus-
ters. A cluster can be defined as a tuple G = {C; r; β} where C, r and β are,
respectively, the center and the radius of the area, and a search strategy associ-
ated to the cluster.
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The center of the cluster C is a solution that represents the cluster, iden-
tifying its location inside the search space. Initially, the centers are obtained
randomly, but progressively, they tend to fall along really promising points in
the close subspace. The radius r establishes the maximum distance, starting
from the center, for which a solution can be associated to the cluster. The
search strategy β is a systematic search intensification, in which solutions of a
cluster interact among themselves along the clustering process, generating new
solutions.

The CS consists of four conceptually independent components with differ-
ent attributions: a search metaheuristic (SM); an iterative clustering (IC); an
analyzer module (AM); and, a local searcher (LS).

The search metaheuristic (SM) component works as a full-time solution gener-
ator. The algorithm is executed independently of the remaining components and
must be able to provide a continuous generation of solutions to the clustering
process. Clusters are maintained, simultaneously, to represent these solutions.
This entire process works like an infinite loop, in which solutions are generated
along the iterations.

The iterative clustering (IC) component aims to gather similar solutions into
groups, identifying a representative cluster center for them. To avoid extra com-
putational effort, IC is designed as an online process, in which the clustering is
progressively fed by solutions generated in each iteration of SM. A maximum
number of clusters NC is an upper bound value that prevents an unlimited clus-
ter creation. A distance metric must be defined, a priori, allowing a similarity
measure for the clustering process.

The analyzer module (AM) component provides an analysis of each cluster,
at regular intervals, indicating a probable promising cluster. A cluster density,
δ, is a measure that indicates the activity level inside the cluster. For simplic-
ity, δi counts the number of solutions generated by SM and allocated to the
cluster i. Whenever δi reaches a certain threshold, indicating that some infor-
mation template has become predominantly generated by SM, that informa-
tion cluster must be better investigated to accelerate the convergence process
on it.

Finally, the local search (LS) component is a local search module that provides
the exploitation of a supposed promising search area framed by the cluster. This
process is executed each time AM finds a promising cluster and the local search is
applied on the center of the cluster. LS can be considered as the search strategy
β associated with the cluster, i.e., a problem-specific local search to be applied
into the cluster.

4 CS Algorithm for PCTSP

A version of CS for the PCTSP is presented in this section. A solution was
represented through a computational structure that contains the visited nodes,
the not visited nodes and the objective value.
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4.1 The GRASP/VNS Metaheuristic

The component SM, responsible for generating solutions to the clustering pro-
cess, was a metaheuristic that combines GRASP [2] and VNS [3].

The GRASP is basically composed of two phases: a construction phase, in
which a feasible solution is generated, and a local search phase, in which the
constructed solution is improved.

At each iteration of the construction phase, let the set of candidate elements
be formed by all nodes that do not visited yet. The selection of the next node for
incorporation is determined by the evaluation of all candidate elements according
to a greedy evaluation function (1). The evaluation of the nodes by this function
leads to the creation of a restricted candidate list (RCL) formed by the best
elements. The element to be incorporated into the partial solution is randomly
selected from those in the RCL. Once the selected node is incorporated to the
partial solution, the candidate list is updated. The construction phase stops when
the minimum prize to be collected. The greedy evaluation function for adding a
node k between the nodes i and j is

g(k) = cij + γk − cik − ckj (1)

that it is composed by the cost of the arc (i, j), the penalty of the node k and
the costs of the arcs (i, k) and (k, j), respectively.

The local search phase of GRASP uses the VNS, which is a metaheuristic going
on a systematic change of the neighborhood within a local search algorithm.

Initially a set of neighborhood structures is defined through random move-
ments. The VNS proposed implement nine neighborhood structures, through the
following movements:

– m1: add one node to the tour;
– m2: drop one node from the tour;
– m3: swap position from two nodes of the tour;
– m4: add two nodes to the tour;
– m5: drop two nodes from the tour;
– m6: swap position from four nodes of the tour;
– m7: add three nodes to the tour;
– m8: drop three nodes from the tour;
– m9: swap position from six nodes of the tour;

Starting from the current solution, at each iteration, randomly a neighbor is
selected in the kth neighborhood of the incumbent solution. That neighbor is
then submitted to some local search method. If the solution obtained is better
than the incumbent, update the incumbent and continue the search of the first
neighborhood structure. Otherwise, the search continues to the next neighbor-
hood. The VNS stopped when the maximum number of iterations since the last
improvement is satisfied.

In this paper we use the method Variable Neighborhood Descent (VND) [3]
as a local search of the VNS, and it is composed by three different improvement
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methods, that combine two movements: Add-step and Drop-step [13]. The Add-
step movement consists of a node addition that provides the best value of the
addition function. The Drop-step movement consists of a node removal (from the
tour) that provides the best value of the removal function. In both movements,
if the function value was positive then the objective function will be better after
the movement. The main aspect to be observed is that all moves are executed
preserving feasibility.

The improvement methods of the VND are:

– SeqDrop: to apply a sequence of Drop-step movements while the objective
function value is being decreased;

– AddDrop: to apply one Add-step movement and one Drop-step movement;
– SeqAdd: to apply a sequence of Add-step movements while the objective

function value is being decreased.

Whenever some improvement method obtains a better solution, the VND
returns to the first improvement method. The stopping condition of the VND is
that there are no more improvements for the incumbent solution.

4.2 The Clustering Process

The IC is the CS’s core, working as a classifier, keeping in the system only
relevant information, and guiding search intensification in the promising search
areas. A maximum number of clusters (NC) is defined a priori. The ith cluster
has its own center Ci and a radius r, like the other clusters.

Solutions generated by GRASP/VNS are passed to IC, that attempts to group
these solutions as known information in a cluster, chosen according to a distance
metric. The solution activates the closest center Ci (cluster center that minimizes
the distance metric), causing some kind of disturbance on it. In this paper, the
metric distance is the number of different edges between the GRASP/VNS and
the center of the cluster solutions. When there are a larger number of different
edges between them it increases the dissimilarity.

The disturbance is an assimilation process, in which the center of the cluster
is updated by the newly generated solution. In this paper, this process is the
path-relinking method [14], that generates several points (solutions) along the
path that connects the solution generated by GRASP/VNS and the center of the
cluster. Since each point is evaluated by the objective function, the assimilation
process itself is an intensification mechanism inside the clusters. The new center
Ci is the best-evaluated solution obtained in the path.

The AM is executed whenever a solution is assigned to a cluster, verifying if
the cluster can be considered promising. A cluster becomes promising when the
density δi reaches a certain threshold, given for:

δi ≥ PD.
NS

|Clus| (2)

where, NS is the number of solutions generated in the interval of analysis of the
clusters, |Clus| is the number of clusters, and PD is the desirable cluster density
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beyond the normal density, obtained if NS was equally divided to all clusters.
The center of a promising cluster is improved through the LS.

The LS was implemented by a 2-Opt procedure [15], which seeks to improve
the center of the promising cluster. The 2-Opt is based on resequencing of the
route always leads to a better solution, since it may possibly decrease travel costs,
while leaving prizes and penalties unchanged. It amounts to simply considering
the set of nodes currently visited by the route and trying to shorten the length
of the route through these nodes. In this paper, the 2-Opt consists in 2-changes
over a route, deleting two arcs and replacing them by two other arcs to form
a new route. This method continues while there is improvement in the route
through this movement.

The whole CS pseudo-code is presented in Figure 1.

procedure CS 
{ SM component } 
for (number of iterations is not satisfied) do

{construction phase of GRASP}
s = 
while (solution not built) do

compute candidate list (C) 
RCL = C * 
e = select at random a value of RCL 
s = s  {e}

end while 
{local search phase of GRASP - VNS}
kmax = number of neighborhoods 
while (stop condition is not satisfied) do

k = 1 
while (k kmax) do

generate at random s’ Nk(s)
s” = apply VND with s’ as starting point 
if ( f (s”) < f (s) ) then

s = s”
k = 1 

else 
k = k + 1 

end while 
end while 
{ IC component } 
calculate the distance of the solution GRASP/VNS (s) and the clusters 
insert the solution in the most similar cluster (Ci)
apply the assimilation process – path-relinking(s, Ci)

{ AM component } 
verify if the cluster can be considered promising. If so, the LS component is 
applied to it 

{ LS component } 
apply the 2-Opt heuristic to the promising cluster 

end for 
end procedure

Fig. 1. CS pseudo-code
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5 Computational Results

The CS algorithm was coded in C++ and it was run on a 3 GHz Pentium 4.
The experiments were accomplished with objective of evidencing the flexibility
of the method in relation to the algorithm used to feed the clustering process,
and also to validate the proposed approach, showing that the clustering search
algorithm can be competitive to solve the PCTSP.

There are no available instances for the PCTSP in the literature. In this paper,
test instances were randomly generated as in Dell’Amico et al. [9]. We generated
problems with n = (20, 40, 60, 80, 100, 200, 300, 400, 500) vertices, travel
costs cij ∈ [1, M ] with M ∈ {1000, 10, 000}, prizes pi ∈ [1, 100], and penalties
γi ∈ [1, N ] with N ∈ {100, 1000, 10, 000}. The value of minimum prize (pmin)

Table 1. PCTSP: Symmetric random instances, cij ∈ [1, 1000]; γi ∈ [1, 100]. Times in
seconds.

CPLEX CS GRASP/VNS

σ n BI Gap RT BS AS AT DE BS AS AT DE

20 903 0.00 0.80 903 903.0 0.03 0.00 903 903.0 0.07 0.00
40 996 0.00 20.46 996 996.0 2.28 0.00 996 996.0 4.41 0.00
60 1314 0.00 474.94 1314 1314.0 13.73 0.00 1314 1321.3 25.36 0.56
80 1384 0.00 26692.93 1386 1392.8 83.03 0.64 1531 1548.0 215.46 11.85

0.2 100 1514 1.85 100,000.00 1508 1526.4 196.10 1.22 1552 1562.3 122.38 3.60
200 - - - 1816 1834.4 502.94 1.01 1898 1922.3 464.14 5.86
300 - - - 2281 2313.0 1069.11 1.40 2439 2506.7 845.10 9.89
400 - - - 2504 2554.2 1212.85 2.00 2671 2691.3 1138.07 7.48
500 - - - 3233 3281.1 1355.62 1.48 3382 3401.3 1936.49 5.21

20 1123 0.00 14.45 1123 1123.0 0.30 0.00 1123 1140.0 0.35 1.51
40 996 0.00 21.84 996 996.0 2.34 0.00 996 1008.0 4.26 1.20
60 1314 0.00 468.51 1314 1314.0 11.42 0.00 1314 1339.0 18.00 1.90
80 1384 0.00 32121.21 1388 1396.6 72.74 0.91 1497 1519.7 296.15 9.80

0.5 100 1514 1.75 100,000.00 1513 1534.6 181.00 1.43 1562 1584.3 84.83 4.71
200 - - - 1816 1844.2 572.46 1.55 1902 1943.7 485.48 7.03
300 - - - 2171 2250.5 1213.63 3.66 2428 2452.1 1127.12 12.94
400 - - - 2489 2579.7 1490.49 3.64 2694 2744.3 1048.74 10.26
500 - - - 3159 3200.7 1784.58 1.32 3246 3298.4 2216.91 4.41

20 1354 0.00 8.79 1354 1354.0 0.15 0.00 1354 1354 0.40 0.00
40 1129 0.00 44.69 1129 1137.0 2.95 0.71 1156 1186.2 4.67 5.07
60 1319 0.00 474.80 1319 1344.2 17.46 1.91 1379 1387.7 9.28 5.21
80 1384 0.00 27498.29 1396 1400.2 63.86 1.17 1468 1485.3 218.82 7.32

0.8 100 1575 6.08 100,000.00 1519 1537.6 186.54 1.22 1563 1589.0 105.63 4.61
200 - - - 1768 1797.2 805.01 1.65 1908 1926.7 630.53 8.97
300 - - - 2148 2213.0 1528.29 3.03 2314 2444.0 1211.34 13.78
400 - - - 2455 2494.3 1668.90 1.60 2599 2669.3 1536.90 8.73
500 - - - 3214 3324.2 1708.36 3.42 3438 3471.6 1842.49 8.02
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has been generated as
[
σ

n∑
i=1

pi

]
with σ ∈ {0.2, 0.5, 0.8}. These test instances are

available in http://www.lac.inpe.br/∼lorena/instancias.html.
The following parameters’ values for approach CS were adjusted through sev-

eral executions. The following parameters obtained the best results:
– number of solutions generated at each analysis of the clusters NS = 200;
– maximum number of clusters NC = 20;
– density pressure PD = 2.5;
– percentage of the best elements in the RCL, α = 0.2.
The formulation presented in [10] was solved using the solver CPLEX 10.0.1,

and the results are presented in following Tables. The CPLEX solved the PCTSP
up to 100 nodes, founding the optimal solution in a reasonable execution time
for small instances. However, for the instances with 80 nodes, the CPLEX took
several hours execution to find the optimal solution, and, for any instances with
100 nodes the CPLEX did not get to close the gap between lower and upper

Table 2. PCTSP: Symmetric random instances, cij ∈ [1, 10, 000]; γi ∈ [1, 1000]. Times
in seconds.

CPLEX CS GRASP/VNS

σ n BI Gap RT BS AS AT DE BS AS AT DE

20 11677 0.00 2.65 11677 11677.0 0.04 0.00 11677 11667.0 0.09 0.00
40 10776 0.00 21.97 10776 10776.0 3.19 0.00 10776 10896.0 7.23 1.11
60 14236 0.00 1151.37 14243 14314.1 7.11 0.55 14684 15033.2 41.46 5.60
80 14484 0.00 68464.35 14609 14760.9 114.86 1.91 15022 15327.1 134.18 5.82

0.2 100 14841 10.79 100,000.00 13620 14015.0 104.17 2.90 14328 14510.9 79.97 6.54
200 - - - 15303 15628.2 528.53 2.13 16250 16560.3 412.80 8.22
300 - - - 21869 22158.0 662.13 1.32 22760 23898.2 653.38 9.28
400 - - - 24390 25099.6 1354.40 2.91 25685 26639.7 1215.72 9.22
500 - - - 31090 31558.7 1643.15 1.51 32965 33666.3 1323.48 8.29

20 12900 0.00 9.84 12900 12900.0 0.17 0.00 12900 12996.9 0.23 0.75
40 10776 0.00 21.95 10776 10776.0 5.58 0.00 10776 10861.1 8.03 0.79
60 14236 0.00 1152.99 14349 14421.9 13.73 1.31 15005 15065.3 51.12 5.82
80 14484 0.00 68464.35 14512 14830.0 111.92 2.39 15458 15744.9 208.18 8.71

0.5 100 14841 10.79 100,000.00 13900 14089.1 118.35 1.36 14447 14696.0 61.04 5.73
200 - - - 15190 15440.4 664.17 1.64 16132 16676.3 502.56 9.78
300 - - - 22731 23211.7 696.75 2.11 23855 24504.3 840.55 7.80
400 - - - 23898 24525.3 1755.43 2.63 25233 25494.1 1395.65 6.68
500 - - - 30275 30842.0 2173.11 1.87 32932 33669.3 1532.14 11.21

20 16559 0.00 6.28 16559 16559.0 0.07 0.00 12559 12559.0 0.12 0.00
40 10776 0.00 31.32 10776 10776.0 4.66 0.00 10776 10844.0 5.83 0.63
60 14864 0.00 18508.17 14864 15017.1 32.74 1.03 15215 15888.2 65.40 6.89
80 14484 0.00 70205.22 14740 14793.9 92.77 2.14 15195 15329.9 142.87 5.84

0.8 100 17316 23.54 100,000.00 13704 13971.9 95.31 1.96 14393 14483.1 104.33 5.68
200 - - - 15200 15376.2 716.94 1.16 15891 16249.3 515.52 6.90
300 - - - 22168 22467.7 1496.77 1.35 23616 24187.3 1135.30 9.11
400 - - - 22790 23688.3 1953.06 3.94 26059 26327.4 1493.63 15.52
500 - - - 30385 30707.0 2336.85 1.06 32608 33273.1 1527.11 9.50

http://www.lac.inpe.br/~lorena/instancias.html
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Table 3. PCTSP: Symmetric random instances, cij ∈ [1, 1000]; γi ∈ [1, 10, 000]. Times
in seconds.

CPLEX CS GRASP/VNS

σ n BI Gap RT BS AS AT DE BS AS AT DE

20 1192 0.00 1.21 1192 1192.0 0.23 0.00 1192 1212.7 0.17 1.73
40 1449 0.00 180.33 1449 1449.0 6.52 0.00 1449 1506.2 5.93 3.95
60 1666 0.00 173.17 1666 1670.2 34.94 0.25 1687 1702.7 30.85 2.20
80 1794 0.00 41884.95 1807 1814.6 144.96 1.15 1842 1846.3 136.71 2.92

0.2 100 1601 0.00 22767.73 1628 1647.0 281.07 2.87 1680 1696.3 189.99 5.95
200 - - - 1898 1946.8 911.18 2.57 2060 2091.3 481.61 10.19
300 - - - 2246 2334.0 920.96 3.92 2462 2501.0 969.01 9.37
400 - - - 2880 2933.7 1370.23 1.86 3049 3105.3 1455.80 7.82
500 - - - 3385 3428.5 2455.34 1.29 3491 3688.1 2039.97 8.95

20 1192 0.00 1.22 1192 1192.0 0.24 0.00 1192 1218.7 0.20 2.24
40 1449 0.00 180.12 1449 1449.0 6.05 0.00 1449 1544.8 8.43 6.61
60 1666 0.00 172.99 1666 1670.8 36.33 0.29 1684 1690.0 33.03 1.44
80 1794 0.00 32442.24 1813 1821.6 131.57 1.54 1855 1876.1 112.92 4.57

0.5 100 1601 0.00 22730.51 1655 1665.3 220.50 4.02 1695 1711.3 141.33 6.89
200 - - - 1968 2012.0 529.79 2.24 2052 2087.7 516.25 6.08
300 - - - 2300 2382.3 1152.44 3.58 2447 2484.3 1118.08 8.01
400 - - - 2842 2935.3 1348.65 3.28 3063 3123.3 1496.11 9.90
500 - - - 3274 3332.6 2054.47 1.79 3500 3587.4 1878.52 9.57

20 1192 0.00 1.21 1192 1192.0 0.25 0.00 1192 1230.7 0.23 2.40
40 1449 0.00 180.55 1449 1449.0 14.07 0.00 1449 1534.8 9.80 5.92
60 1666 0.00 172.85 1666 1669.6 46.41 0.22 1687 1691.3 30.85 1.52
80 1794 0.00 27699.33 1801 1815.2 110.43 1.18 1863 1868.0 83.50 4.12

0.8 100 1601 0.00 22722.64 1626 1658.8 235.88 3.61 1700 1712.3 193.64 6.95
200 - - - 1978 1999.8 609.86 1.10 2050 2062.3 665.13 4.26
300 - - - 2319 2371.7 1100.99 2.27 2473 2536.2 969.01 9.37
400 - - - 2837 2849.0 1554.54 0.42 2876 2907.3 1864.01 2.48
500 - - - 3305 3333.2 2134.51 0.85 3491 3494.5 1985.14 5.73

bounds in 100,000 seconds. Beside that, the CPLEX did not get to find a feasible
solution for instances with n ≥ 200 in 100,000 seconds.

Tables 1-4 give the results for the PCTSP. The entries in the tables are:

– value of parameter σ;
– number of vertices (n) in the original graph;
– the best integer solutions (BI) found by the CPLEX, the Gap and running

time (RT) of CPLEX. The values of Gap equal zero define that the optimal
has been achieved;

– best solution (BS), average solution (AS), average running time (AT) to find
the best solution during the CS execution and the Deviation (DE), that
reflects the relative error of the average solution for the CS algorithm, and
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Table 4. PCTSP: Symmetric random instances, cij ∈ [1, 10, 000]; γi ∈ [1, 100]. Times
in seconds.

CPLEX CS GRASP/VNS

σ n BI Gap RT BS AS AT DE BS AS AT DE

20 3011 0.00 9.77 3011 3011.0 0.01 0.00 3011 3046.2 0.05 1.17
40 3506 0.00 26.06 3506 3531.6 0.67 0.73 3506 3544,4 2.21 1.10
60 4251 0.00 130.31 4277 4287.2 14.86 0.85 4617 4693.2 9.91 10.40
80 4903 0.00 2226.51 4903 5044.3 22.61 2.88 5347 5543.3 22.36 13.05

0.2 100 5635 0.00 10824.22 5702 5802.0 59.71 2.96 6095 6125.7 40.44 8.71
200 - - - 9035 9129.0 303.41 1.04 9669 9865.3 246.28 9.19
300 - - - 14592 14875.2 319.14 1.94 15380 15540.0 444.85 6.50
400 - - - 16651 16850.3 640.17 1.20 17297 17564.7 567.84 5.49
500 - - - 20612 21305.7 836.68 3.37 21986 22231.0 730.29 7.85

-
20 4313 0.00 7.97 4313 4313.0 0.17 0.00 4313 4652.1 0.28 7.86
40 4694 0.00 59.86 4694 4694.0 4.29 0.00 4694 4736.6 8.82 0.91
60 6120 0.00 700.35 6232 6361.7 14.05 3.95 6739 6937.1 10.57 13.35
80 6319 0.00 72518.87 6528 6628.1 63.69 4.89 7180 7303.7 88.78 15.58

0.5 100 6869 0.00 69562.82 7710 7833.7 119.52 14.04 8206 8655.0 120.07 26.00
200 - - - 10293 10578.0 438.80 2.76 11165 11337.0 231.34 0.51
300 - - - 15312 15698.3 549.65 2.52 16872 17646.1 664.34 15.24
400 - - - 17263 17535.7 841.70 1.58 18256 18552.3 744.61 7.47
500 - - - 20896 21623.7 1056.08 3.48 22136 22300.9 801.02 6.72

-
20 7797 0.00 14.47 7797 7797.0 0.11 0.00 7797 7958.6 0.22 2.07
40 9070 0.00 43.26 9070 9171.6 7.55 1.12 9224 9302.6 7.27 2.56
60 9459 0.00 10854.96 9664 9810.5 32.77 3.72 9934 10165.1 22.20 7.46
80 9699 0.00 98073.17 9991 10048.0 97.02 3.60 11118 11315.2 108.70 16.96

0.8 100 10002 0.31 100,000.00 10641 10724.1 157.96 7.22 11267 11470.0 131.20 14.68
200 - - - 12650 13024.0 616.84 2.96 13448 13853.1 406.51 9.51
300 - - - 18253 18740.8 1100.30 2.67 19532 20128.3 908.09 10.27
400 - - - 18501 18955.7 1574.56 2.46 19996 21119.3 1027.42 14.15
500 - - - 23234 23590.3 1920.92 1.53 24239 25364.9 1451.63 9.17

the best solution found by CPLEX or CS, and it is calculated by (AS - BS
or BI)/(BS or BI) ×100; and

– best solution (BS), average solution (AS), average running time (AT) to find
the best solution during the GRASP/VNS execution and Deviation (DE).

The best solutions found (BS), the averages of solutions (AS) and the averages
running times to find the best solution (AT) were considered to compare the
approaches. The values in boldface show the best objective function values and
execution times for each instance.

Table 1 gives the results for all values of n, σ, cij ∈ [1, 1000] and γi ∈ [1, 100].
One can see that the approach CS has better results in 89% of the tests, has
found the optimal solutions for instances up to 60 nodes, and solutions better
than the CPLEX for instances with 100 nodes. The running times of CS algo-
rithm were very competitive related to the CPLEX. The GRASP/VNS, without
the clustering process, has worse results than CS in quality of solutions and
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deviation. The CS algorithm was very robust producing small deviations. The
same conclusions can be drawn for instances with cij ∈ [1, 10, 000] and γi ∈
[1, 1000] presented in Table 2.

Table 3 reports the results of computational experiments with cij ∈ [1, 1000]
and γi ∈ [1, 10, 000]. In this case, the CS algorithm has better results in 77% of
the tests, having found the optimal solutions for instances up to 60 nodes. The
running times of the CS algorithm were very competitive related to the CPLEX
and again the results of the CS were better than the GRASP/VNS without the
clustering process.

The results of Table 4 refer to instances with cij ∈ [1, 10, 000] and γi ∈
[1, 100]. The results for these instances were worse than the other three classes
of instances, and, the CS algorithm did not get to find the optimal solutions for
instances with 60, 80 and 100 nodes, but the solutions were closer to optimal.
The CS, in this case, has better results only in 66,6% of the tests. On the other
hand, the results of the CS were better than the GRASP/VNS.

Finally, note that the results of Tables 1 and 3 with cij ∈ [1, 1000] did not have
large changes when σ increases. And, for Tables 2 and 4 with cij ∈ [1, 10, 000]
the results were very different when σ goes from 0.2 to 0.8. In spite of that,
the CS algorithm found results with small deviations for all classes of instances,
independently of the value of σ.

6 Conclusions

This paper has presented a solution for the Prize Collecting Traveling Sales-
man Problem using Clustering Search (CS). The CS uses the concept of hybrid
algorithms, combining metaheuristics with a clustering process.

The idea of the CS is to avoid applying a local search heuristic to all solutions
generated by a metaheuristic, which can make the search process impracticable
because of time consumption, mainly when the heuristic has a high computa-
tional cost. The CS detects the promising regions in the search space during the
solution generation process and applies the local search heuristics only in these
regions, i.e., to detect promising regions becomes an interesting alternative pre-
venting the indiscriminate application of such heuristics.

This paper reports results of different classes of instances to the PCTSP found
by CPLEX, CS and GRASP/VNS methods. CS algorithm got better results than
GRASP/VNS and it founds good values comparing to CPLEX. CS has two
advantages over CPLEX: execution time, and the cost of a commercial solver.

The results show that the CS approach is competitive for the resolution of
the PCTSP in reasonable computational times. For instances up to 60 nodes,
the optimal solutions were found. Besides, the CS obtained better results than
CPLEX for some instances with 100 nodes. Therefore, these results validate the
CS application to the PCTSP.

Further studies can be done which analyze others metaheuristics to generate
solutions for the clustering process of the CS, such as the Ant Colony System,
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Tabu Search and Simulated Annealing, and apply the CS in other generalizations
of the TSP, such as Profitable Tour Problem and Quota TSP.
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Abstract. This paper deals with the Vehicle Routing Problem with Si-
multaneous Pick-up and Delivery and Time Limit (VRPSPDTL). Due
to the combinatorial nature of the problem, heuristics methods are com-
monly used to generate good quality solutions within an acceptable com-
putational time. Accordingly, an Iterated Local Search (ILS) procedure
that uses a Variable Neighborhood Descent (VND) method to perform
the local search is proposed. The algorithm was applied to test prob-
lems and, in most cases, was found to produce better results than those
reported in the literature.

1 Introduction

The Vehicle Routing Problem with Pick-up and Delivery (VRPPD), i.e., where
people or objects should be collected and distributed, constitutes an important
category of the well-known Vehicle Routing Problem (VRP). In the late 80’s,
Min [1] proposed a new variation for the VRPPD where, in certain situations,
the pick-up and delivery services must be carried out simultaneously for each
customer, characterizing one of the most important variants of this class: the
Vehicle Routing Problem with Simultaneous Pick-up and Delivery (VRPSPD).

The Vehicle Routing Problem with Simultaneous Pick-up and Delivery and
Time Limit (VRPSPTL) was first dealt with by Salhi and Nagy [2], where the
authors consider a maximum time constraint, that is, a vehicle must not exceed
an established time limit. This can be treated similarly as the maximum distance
constraint. The total amount of time consumed by a vehicle is given by the time
traveled plus the time spent attending the customers (drop time). The total
distance traveled is given by the vehicle speed multiplied by the time traveled.
Thus, the values of the time traveled and the total distance are equal when a unit
speed is assumed. Therefore the total time can be calculated as the total traveled
distance plus the drop times. When the drop time is assumed to be the same
for all clients, the total time spent attending to all customers can be obtained
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directly by multiplying the number of clients visited by the pre-determined drop
time.

Some applications of the VRPSPDTL can be observed in the beverage in-
dustry, where filled bottles are delivered while the empty ones are collected; in
grocery stores, where pallets or containers are collected for re-use in merchan-
dise transportation, etc. It is important to mention that some clients can demand
that the pick-up and delivery services should not be carried out separately, since,
in certain cases, this may result in additional costs and operational efforts for
these customers. In addition, some companies are obliged by law to accomplish
the daily working time regimen of a vehicle driver and, due to this requirement,
some routes must be carried out within a time limit.

Thus, one should consider not only the Distribution Logistics, but also the
management of the reverse flow. It is in this context, that the concept of Reverse
Logistics arises, which can be defined as the process of planning, implementing
and controlling the return of raw materials, inventories under process, finished
products and information related to the point of consumption until the point
of origin. Therefore, the Distribution Logistic and Reverse Logistic should act
together with an aim to guarantee the synchronization between the pick-up and
delivery operations, as well as their impact on the company’s supply chain, re-
sulting in the customer’s satisfaction and minimization of the operational efforts.

However, this is not a simple task, since the VRPSPDTL is NP-hard, and
the determination of the optimum solution, by means of an exact method, in
an acceptable time, is almost impossible. Due to combinatorial nature of the
problem, heuristic techniques have been often applied in order to obtain good
quality solutions in an acceptable time. Hence, this paper proposes a multistart
Iterated Local Search (ILS) heuristic which uses a greedy approach for generating
the initial solution and the Variable Neighborhood Descent (VND), with most
of the VRP familiar neighborhood structures, in the local search phase. To the
best of our knowledge, this is the first time that the ILS has been applied to
solve a variant of the VRPPD.

This paper is organized as follows. Section 2 provides a brief literature review
of some related works. Section 3 brings the main aspects of the ILS metaheuristic.
Section 4 illustrates solution procedure. Section 5 contains the results obtained
and a comparison with the ones found in the literature. Finally, Section 6 presents
the concluding remarks.

2 Literature Review

The VRPSPD was first proposed by Min [1], where the author shows a real-
life application through a case study carried over in public library’s distribution
system. Since then, little work has been done related to this variant. Only a
decade later, Salhi and Nagy [2] suggested some insertion heuristics, also capable
of solving the problem with multi-depots and time limit constraints. Recently the
same authors have developed another procedure in [3] which involves solutions
with certain degree of feasibility.
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Dethloff [4] treats VRPSPD under various aspects of reverse logistics and
proposes a constructive procedure (insertion heuristic) based on the cheapest
feasible insertion criterion, radial surcharge, and the residual capacity, where
the last one is an adaptation of the load-base approach. The VRPSPDTL is also
considered in his work.

Vural [5] makes use of two methods based on Genetics Algorithms and it
appears that this was the first work where a metaheuristic was applied to solve
the VRPSPD. Gokçe [6] developed a four phase heuristics based on the Ant
Colony metaheuristic.

Crispim and Brandão [7] present a hybrid procedure where Tabu Search (TS)
and VND are combined. Montané and Galvão [8] proposed a TS algorithm
involving multiple neighborhood structures: reallocation, interchange (swap),
crossover and 2-opt. The same metaheuristic was implemented by Gribkovskaia
et al. [9], for the case where only one vehicle is considered.

Ropke and Pisinger [10] developed a large neighborhood heuristic associated
with a procedure similar to the VNS metaheuristic. The authors also solved
several variants of the VRPPD including the VRPSPDTL.

Chen and Wu [11] proposed an insertion heuristic to generate initial solutions
and a local search procedure based on the record-to-record travel approxima-
tion and tabu lists. Chen [12] developed a hybrid heuristic that combines the
principles of the Simulated Annealing and TS metaheuristics.

Bianchessi and Righini [13] suggest some constructive algorithms and local
search heuristics as well as a TS procedure that uses a variable neighborhood
structure, in which the node-exchange-based and arc-exchange-based movements
were combined. Wassan et al. [14] made use of a constructive procedure based
on the sweep algorithm and propose a reactive tabu search with the following
neighborhood structures: reallocation of a client (shift), exchanging two clients
between two different routes (exchange) and reversing the route direction (re-
verse). They also dealt with the VRPSPDTL.

Dell’Amico et al. [15] make use of an exact approach based on the branch-
and-price technique. The problem is treated in two different ways, both under
the dynamic programming scope. The same technique is applied by Angelelli
and Mansini [16], where the authors consider the VRPSPD with time-windows
constraints.

3 Iterated Local Search

Let us assume that a local optimum solution has been found by a local search
algorithm. Instead of restarting the same procedure from a completely new so-
lution, the ILS metaheuristic applies a local search repeatedly to the initial
solutions achieved by perturbing the local optimum solutions previously visited.
According to Lourenço et al. [17], the essential idea of ILS resides in the fact that
it focuses on a smaller subset, instead of considering the total space of solutions,
defined by the local optimums of a given optimization procedure. To implement
the ILS, four procedures should be specified: (i) GenerateInitialSolution,
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where an initial solution is constructed; (ii) LocalSearch, which improves the
solution initially obtained; (iii) Perturb, where a new starter point is gen-
erated through a perturbation of a solution found in the LocalSearch; (iv)
AcceptanceCriterion, that determines from which solution the search should
continue.

As stated by Stützle [18], the modification realized in the perturbation phase
is used in order to escape from a current local optimum solution. Frequently,
the movement is randomly chosen within a larger neighborhood in comparison
to the one utilized in the local search procedure, or a movement that the local
search algorithm cannot undo in just one step. In principle, any local search
method can be used, however, its performance, in terms of the solution quality
and computational effort, strongly depends on the chosen algorithm. The accep-
tance criterion is used to decide the next solution that should be perturbed. The
selection of this criterion is important because it controls the balance between
intensification and diversification. The search history is employed for deciding
if some local optimum solution, found previously, should be chosen. The ILS
procedure can lead to good samples of the search space as far as the perturba-
tions are not too large or too small. If it is small, not many new solutions will
be explored, while if it is too large, it will adopt almost randomly starting points.

Procedure ILS-VND(MaxIter, MaxIterILS, seed, γ, v)
LoadData( );
f(s∗) := ∞;
for k := 1,..., MaxIter do

s := GenerateInitialSolution(γ, v, seed);
s

′
:= s;

iterILS := 0;
while iterILS < MaxIterILS do

s := VND(N(.), f(.), r, s); {r = n0 of neighborhoods}
if f(s) < f(s

′
)

s
′
:= s;

f(s
′
) := f(s);

iterILS := 0;
end if;
if s := Perturb(s

′
);

iterILS := iterILS + 1;
end while;
if f(s

′
) < f(s∗)

s∗ := s
′
;

f(s∗) := f(s
′
);

end if;
end;
return;
end ILS-VND;
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4 Solution Procedure

The proposed algorithm (ILS-VND) works as follows. The procedure is executed
MaxIter times, where a initial solution is generated by a greedy heuristic and
then it is improved by a procedure based on the ILS metaheuristic which realizes
a local search by means of a VND heuristic. The pseudocode is described in the
previous page, where s∗ corresponds do the best solution, v is the number of
vehicles imputed and γ is a parameter treated in details on Subsection 4.1.

4.1 Constructive Procedure

The method employed for building a feasible initial solution involves a greedy
approach and is an adaptation of Dethlof’s [4] insertion heuristic, but without
considering the residual capacity. The pseudocode is given below.

Procedure GenerateInitialSolution(seed, γ, v)
s := ∅;
Inicialize the Candidate List(CL);
Let s =

{
s1, . . . , sv

}
be the set composed by v empty routes;

t := 1;
while t ≤ v;

st := e ∈ CL selected at random;
Update CL;
t := t + 1;

end while;
while CL �= ∅ do;

Evaluate the value of each cost g(e) for e ∈ CL;
gmin := min{g(e)|e ∈ CL};
n := client e associated to gmin;
s := s ∪ {n};
Update CL;

end while;
return s;
end GenerateInitialSolution;

To begin with, the number of vehicles v to be considered for constructing
the initial solution is pre-determined. Then, all routes are filled with a client e,
chosen at random from the Candidate List (CL). Later, the clients belonging
to the CL are evaluated according to the insertion criterion expressed by the
Equation (1).

g (ev) = (Cik + Ckj − Cij) − γ (C0k + Ck0) (1)

The first part of (1) is related to the well-known cheapest feasible insertion
criterion, which consists of a greedy approach that takes into account the least
additional cost regarding the insertion of the node k between the nodes i and j of
the route v. Naturally, only the feasible insertions are admitted. The second part
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corresponds to a surcharge used to avoid late insertions of customers remotely
located. The distance from the depot and back is weighted by a factor γ ∈ [0, 1].
The client e associated to gmin is then added to the solution s. The constructive
procedure ends when all the clients have been added to the solution s.

4.2 Local Search

The local search phase, responsible to improve the initial solution is performed by
a heuristic based on the VND algorithm. Mladenović and Hansen [19] proposed
the variable neighborhood descent method which systematically modifies the
neighborhood structures that belong to a set N =

{
N (1), N (2), N (3), . . . , N (r)

}
,

in a deterministic way.
In the proposed algorithm, a set of six neighborhood structures are used to

perform movements between clients of different routes. Just the feasible move-
ments are admitted, i.e., the ones that do not violate the maximum load or
maximum time constraints. Therefore, every time an improvement occurs, one
should check whether this new solution is feasible or not. The N set of neigh-
borhoods is described next.

Shift(1,0) – N (1) – A client c is transferred from a route r1 to a route r2.
The vehicle load is checked as follows. All nodes located before the insertion’s
position have their loads added by qc (delivery demand of the client c), while the
ones located after have their loads added by pc (pick-up demand of the client
c). It is worth mentioning that certain devices to avoid unnecessary infeasible
movements can be employed. For instance, before checking the insertion of c
in some certain route, a preliminary verification is performed in r2 to evaluate
the vehicle load before leaving,

∑
i∈r2 qi + qc, and when arriving,

∑
i∈r2 pi + pc,

the depot. If the load exceeds the vehicle capacity Q, then all the remaining
possibilities of inserting c in this route will be always violated.

Crossover – N (2) – The arc between adjacent nodes c1 and c2, belonging to
a route r1, and the one between c3 and c4, from a route r2, are both removed.
Later, an arc is inserted connecting c1 and c4 and another is inserted linking c3
and c2. The procedure for testing the vehicle load is more complex in comparison
to Shift(1,0). At first, the initial (l0) and final (lf ) vehicle loads of both routes are
calculated. If the values of l0 and lf do not exceed the vehicle capacity Q then the
remaining loads are verified through the following expression: li = li−1 + pi − qi.
Hence, if li surpass Q, the movement is infeasible.

Swap(1,1) – N (3) – Permutation between a node c1 from a route r1 and a
node c2, from a route r2. The loads of the vehicles of both routes are examined
in the same manner. For example, in case of r2, all clients situated before the
position that c2 was found (now replaced by c1), have their values added by qc1
and subtracted by qc2, while the load of the clients positioned after c1 increases
by pc1 and decreases by pc2.

Shift(2,0) – N (4) – Two consecutive nodes, c1 and c2, are transferred from
a route r1 to a route r2. The vehicle load is tested likewise Shift(1,0).
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Swap(2,1) – N (5) – Permutation of two consecutive nodes, c1 and c2, from
a route r1 by a node c3 from a route r2. The load is verified by means of an
extension of the approach used in the neighborhoods Shift(1,0) and Swap(1,1).

Swap(2,2) – N (6) – Permutation between two consecutive nodes, c1 and c2,
from a route r1 by another two consecutive c3 and c4, belonging to a route r2.
The load is checked just as Swap(1,1).

Procedure VND(N(.), f(.), r, s)
{Let r be the number of neighborhood structures}
k := 1; {current neighborhood}
while k ≤ r do;

Find the neighbor s
′
of s ∈ Nk;

if f(s
′
) < f(s)

then
s := s

′
;

f(s) := f(s
′
);

k := 1;
{intensification in the modified routs}
s

′
:= Or-opt(s);

s
′′

:= 2-opt(s
′
);

s
′′′

:= Exchange(s
′′
);

s
′′′′

:= Reverse(s
′′′

);
if f(s

′′′′
) ≤ f(s)

s := s
′′′′

;
f(s) := f(s

′′′′
);

end if;
else

k := k + 1;
end if;

end while;
return s;
end VND;

In case of improvement of the current solution, one should aim to further
refine the quality of the routes that contributed to reduce the objective func-
tion, that is, those which participated in the last betterment move. Hence, four
different neighborhoods are explored.

Or-opt – Introduced by Or [20], where one, two or three consecutive clients
are removed and inserted in another position of the route.

2-opt – A pair of arcs is removed and another one is inserted.
Exchange – Permutation between two nodes
Reverse – This movement reverses the route direction if the value of the

maximum load of the corresponding route is reduced.
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4.3 Perturbation Mechanism

Just one mechanism was used for perturbing a local optimum solution, namely,
the double-bridge movement. Introduced by Martin et al. [21] this perturbation
was originally developed for the Traveling Salesman Problem (TSP) and con-
sists in cutting four edges of a given route and inserting another four as shown in
Fig. 1. In our case, whenever the Perturb() function is called, the double-bridge
movement is randomly applied in all routes. Lourenço et al. [17] states that sev-
eral applications of the ILS for the TSP have employed this type of perturbation,
and it has been noted to be effective for different instance sizes.

It is important to point out that other perturbation mechanisms, involving
more than one route, were tried. For example, exchanging paths of two different
routes or successive Swap(1,1) moves. However, they were unsuccessful in most
of the cases. The main reason is due to difficulty of finding a feasible move,
since these perturbations often led to infeasible solutions, mostly because of the
maximum time constraint.

Fig. 1. Double-Bridge Perturbation. Four edges are removed and four new ones are
inserted.

5 Computational Results

The algorithm was implemented in C++ programming language, using the Bor-
land C++ Builder 6.0 compiler and executed in a PC Intel Core 2 Duo 2.13
GHz with 1024 MB of RAM memory and operation system Windows XP -
Professional Edition. The heuristic was applied to 14 test problems proposed
by Salhi and Nagy [2]. In all instances the drop time was admitted to be
the same for all customers. Some authors (Salhi and Nagy [2], Dethloff [4],
Ropke and Pisinger [10]) have tested these instances including the drop time,
while Montané and Galvão [8] did not include it in their work. Recently, Was-
san et al. [14] admitted both situations. On the other hand, Nagy and Salhi
[3] treated the problem including drop times but allowing two visits to the
same client. Thus, a straightforward comparison cannot be made with their
results.

For all the scenarios considered, the number of iterations (MaxIter) and per-
turbations allowed (MaxIterILS), was 15 and 30 respectively. Thirty executions
were performed for each one of the different parameterizations of γ. Preliminary
tests showed that γ ∈ [0, 0.5] yielded superior results. In order to show the in-
fluence of the variation of this parameter, a graph was constructed (Fig. 2) in
which γ was considered to be 0.05, 0.15, 0.25, 0.35 and 0.45. The gap shown
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Fig. 2. Influence of the parameter γ on the average solutions of the ILS-VND

in the graph corresponds to the deviation between the average solution and the
best solution found by the algorithm in each case.

It can be seen from the graph that the gap tends to be smaller for γ = 0.25
and γ = 0.45 as compared to γ = 0.05, γ = 0.15 and γ = 0.35. It should be
stressed that the value of γ that yielded the best average solution frequently,
but not always, led to the best solution determined by the ILS-VND.

The results found by the ILS-VND when the drop time was considered are
shown in Table 1, where vi represents the number of vehicles initially imputed
and vf the number of vehicles associated with the final solution. The average
gap between the best solutions and the average solutions was 1.23%, with the
highest value in the instance CMT9X (2.53%). Table 2 shows a comparison of
our results with the best ones reported in the literature. We observe that, out
of 14 problems, the ILS-VND improved the results in 12 instances and equaled
2, with an average gap of -1.85%.

Table 3 illustrates the results obtained by the ILS-VND without considering
the drop time. In this case, the average gap between the best solutions and
the average solutions was 1.83%, with the highest gap in the instance CMT13Y
(3.86%). From Table 4, it can be verified that among the 14 test problems, the
ILS-VND produced better results in 8 cases and the same result in a single
instance. The average gap was -0.54%.

Analyzing the results, it can be verified that the developed heuristic con-
siderably depends on the choice of the parameter γ. On the other hand, the
double-bridge perturbation seemed to work quite well along with the different
set of neighborhoods structures adopted.
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Table 1. Results obtained in Salhi and Nagy’s instances (with drop time)

Problem No. of vi vf Best Time Avg. Gap γ Avg.
clients Sol. (s) Sol. (%) Time (s)

CMT6X 50 7 6 555.43 2.47 558.71 0.59 0.35 2.61
CMT6Y 50 7 6 555.43 2.44 558.93 0.63 0.45 2.48
CMT7X 75 14 11 901.22 3.72 911.35 1.12 0.35 3.83
CMT7Y 75 14 11 901.22 3.88 910.88 1.07 0.40 3.79
CMT8X 100 10 9 865.50 19.53 870.72 0.60 0.50 20.13
CMT8Y 100 10 9 865.50 23.14 870.42 0.57 0.20 25.28
CMT14X 100 11 10 821.75 29.62 821.75 0.00 0.00 32.85
CMT14Y 100 11 10 821.75 28.33 821.75 0.00 0.00 31.87
CMT13X 120 12 11 1545.96 95.00 1566.97 1.36 0.20 102.57
CMT13Y 120 12 11 1542.86 105.66 1557.83 0.97 0.35 99.29
CMT9X 150 16 14 1167.23 69.20 1196.81 2.53 0.20 67.87
CMT9Y 150 17 14 1167.69 65.36 1194.08 2.26 0.10 66.89
CMT10X 199 21 18 1407.66 151.41 1437.31 2.11 0.20 157.55
CMT10Y 199 20 18 1413.88 148.11 1434.05 1.43 0.45 158.21

Table 2. Comparison between ILS-VND and literature results (with drop time)

Problem No. of Literature v ILS- v Gap(%)
clients Best VND

CMT6X 50 556.06W 6 555.43 6 -0.11
CMT6Y 50 558.17W 6 555.43 6 -0.49
CMT7X 75 901RP - 901.22 11 0.00
CMT7Y 75 903.36W 11 901.22 11 -0.24
CMT8X 100 866RP - 865.50 9 -0.06
CMT8Y 100 873RP - 865.50 9 -0.86
CMT14X 100 823.95W 10 821.75 10 -0.26
CMT14Y 100 823.34W 10 821.75 10 -0.19
CMT13X 120 1576D 11 1545.96 11 -1.91
CMT13Y 120 1576D 11 1542.86 11 -2.10
CMT9X 150 1197RP - 1167.23 14 -2.49
CMT9Y 150 1213.11W 15 1167.69 14 -3.74
CMT10X 199 1462RP - 1407.66 18 -3.72
CMT10Y 199 1419.79W 18 1413.88 18 -0.42

*(W) Wassan et al.; (RP) Ropke and Pisinger; (D) Dethloff.

Table 3. Results obtained in Salhi and Nagy’s instances (without drop time)

Problem No. of vi vf Best Time Avg. Gap γ Avg.
clients Sol. (s) Sol. (%) Time (s)

CMT6X 50 3 3 466.77 3.56 467.62 0.18 0.30 4.13
CMT6Y 50 3 3 466.77 3.20 466.84 0.01 0.25 4.19
CMT7X 75 7 6 686.52 12.59 698.03 1.68 0.45 12.38
CMT7Y 75 7 6 688.46 11.62 698.97 1.53 0.10 12.93
CMT8X 100 5 6 721.40 27.33 727.60 0.86 0.35 31.04
CMT8Y 100 5 6 721.40 34.64 728.09 0.93 0.50 31.82
CMT14X 100 6 6 663.50 34.08 672.82 1.40 0.20 34.06
CMT14Y 100 6 5 662.22 37.09 672.56 1.56 0.40 32.48
CMT13X 120 5 4 846.85 63.95 878.27 3.71 0.50 61.50
CMT13Y 120 5 4 848.45 71.19 881.23 3.86 0.40 57.11
CMT9X 150 8 7 855.74 100.64 870.77 1.76 0.35 102.88
CMT9Y 150 8 7 856.74 111.47 871.21 1.69 0.30 103.71
CMT10X 199 11 10 1037.37 271.45 1058.31 2.02 0.05 284.52
CMT10Y 199 11 10 1036.59 225.45 1059.56 2.22 0.15 242.11
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Table 4. Comparison between ILS-VND and literature results (without drop time)

Problem No. of Literature v ILS- v Gap(%)
clients Best VND

CMT6X 50 471.89W 3 466.77 3 -1.08
CMT6Y 50 467.70W 3 466.77 3 -0.20
CMT7X 75 663.95W 6 686.52 6 3.40
CMT7Y 75 662.50W 6 688.46 6 3.92
CMT8X 100 720MG 5 721.40 5 0.19
CMT8Y 100 721MG 5 721.40 5 0.06
CMT14X 100 644.70W 5 663.50 6 2.92
CMT14Y 100 659.52W 6 662.22 5 0.41
CMT13X 120 858.48W 5 846.85 4 -1.35
CMT13Y 120 880.56W 4 848.45 4 -3.65
CMT9X 150 880.61W 7 855.74 7 -2.82
CMT9Y 150 886.84W 7 856.74 7 -3.39
CMT10X 199 1079.99W 10 1037.37 10 -3.95
CMT10Y 199 1058.09W 10 1036.59 10 -2.03

*(W)Wassan et al.; (MG) Montané and Galvão.

6 Conclusion

This paper dealt with the Vehicle Routing Problem with Simultaneous Pick-
up and Delivery and Time Limit Constraint. An algorithm based on the ILS
metaheuristic embedded with a VND procedure for performing the local search,
was proposed. To the best of our knowledge, this was the first time the ILS has
been applied to solve this problem.

The algorithm was tested in the instances proposed by Salhi and Nagy [2].
In most cases, it yielded better results than those reported in the literature.
When the drop time was considered, the average gap between the ILS-VND
solutions and the best ones found in the literature was -1.85% and when it was
not included, the deviation was -0.54%.
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Abstract. An immune genetic algorithm based on bottleneck jobs is
presented for the job shop scheduling problem in which the total weighted
tardiness must be minimized. Bottleneck jobs have significant impact on
final scheduling performance and therefore need to be considered with
higher priority. In order to describe the characteristic information con-
cerning bottleneck jobs, a fuzzy inference system is employed to trans-
form human knowledge into the bottleneck characteristic values which
reflect the features of both the objective function and the current opti-
mization stage. Then, an immune operator is designed based on these
characteristic values and a genetic algorithm combined with the immune
mechanism is devised to solve the job shop scheduling problem. Numeri-
cal computations for problems of different scales show that the proposed
algorithm achieves effective results by accelerating the convergence of
the optimization process.

1 Introduction

The job shop scheduling problem has long been an important research field
since the 1950s and most shop scheduling problems have been shown to be
NP-hard [1]. Therefore, it’s considerably difficult to obtain the optimal so-
lution even for instances of 10 machines and 10 jobs. In recent years, global
search strategies such as genetic algorithms (GA) played a significant role
in solving small-scale job shop scheduling problems [2,3,4]. However, when
the problem size grows, the NP-hard property of job shop problems means
that the search space will increase exponentially and the performance of
heuristic search methods alone will hardly be satisfactory. To address this
difficulty, two major approaches may be roughly identified in the existing
literature:

(1) Traditional crossover and mutation operations have been modified in order
to produce better offspring, and some new operators, such as the Estimation
of Distribution Algorithms (EDA) [5], are devised to replace the traditional
genetic operators so as to enhance the searching ability of GA;

J. van Hemert and C. Cotta (Eds.): EvoCOP 2008, LNCS 4972, pp. 147–157, 2008.
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(2) Problem-specific or instance-specific information is extracted to accelerate
the converging speed of GA.

In this latter approach, immune genetic algorithm (IGA) is designed to uti-
lize the characteristic information based on the specific problem to improve the
individuals in each generation. IGA has been proved efficient for the traveling
salesman problem (TSP) [6]. However, for other optimization problems, how to
effectively extract and describe the characteristic information remains a chal-
lenging but promising research topic.

In job shop scheduling, the concept of ‘bottleneck’ has attracted wide at-
tention from many researchers [7,8,9]. In most problems, the final scheduling
performance could be notably improved if these bottleneck machines or bottle-
neck jobs are well scheduled. However, how to describe the bottleneck indices
in a quantitative manner and how to design bottleneck identification proce-
dures for different scheduling objectives and different optimization stages are
still difficult and crucial problems in the scheduling community. In this paper,
we devise a fuzzy inference system based on human knowledge to evaluate the
bottleneck characteristic value for each job and then use this information in an
immune mechanism to promote the optimization efficiency of GA. Computa-
tional results for problems of different sizes show that the proposed algorithm is
effective.

The paper is organized as follows. The discussed job shop scheduling problem
is formulated in section 2. Section 3 gives the detailed algorithm. The com-
putational results are provided in section 4. Finally, conclusions are given in
section 5.

2 Problem Formulation

Job shop is one of the most frequently adopted models when dealing with
scheduling problems. In a Job Shop Scheduling Problem (JSSP), a set of n
jobs {Ji}n

i=1 are to be processed on a set of m machines {Mk}m
k=1 under the

following basic assumptions:

– There is no machine breakdown and no preemption of operations is allowed;
– All jobs are released at time zero, and the transportation time between

different machines and the setup time for different jobs are all neglected;
– Each machine can process only one job at a time and each job can be pro-

cessed by only one machine at a time.

Each job has a fixed processing route which traverses all the machines in a
predetermined order. Besides, a preset due-date is given for each job.

JSSP can also be described by a disjunctive graph G(O, A, E) [10], in which
O ≡ {0, 1, · · · , ∗} represents the set of nodes (including two dummy nodes, 0 and
∗); A is the set of conjunctive arcs and E =

⋃
k∈M Ek is the set of disjunctive

arcs if we denote by Ek the disjunctive arcs that correspond to machine Mk.
Then the discussed JSSP can be formulated as follows:
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⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min WT =
∑

j∈C(J)

wj (tj + pj − dj)
+

s.t.
ti + pi ≤ tj , (i, j) ∈ A,
ti + pi ≤ tj ∨ tj + pj ≤ ti, (i, j) ∈ Ek, k ∈ M,
ti ≥ 0, i ∈ O.

In this formulation, C(J) is the set of the final operations of all the jobs; wj

and dj are respectively the tardiness weight and the due-date of the job which
operation j belongs to; pj and tj are the processing time and the starting time
of operation j, respectively; (x)+ = max{x, 0}.

The scheduling objective considered in this paper is to determine the pro-
cessing sequence of operations on each machine such that the total weighted
tardiness is minimized. The problem is noted as J//

∑
Ti in accordance with

the three-field notation [11].

3 The Algorithm

3.1 The Bottleneck Characteristic Values

In the proposed IGA algorithm, the immune operator is designed based on
the bottleneck characteristic information. The bottleneck characteristic value
(JBN) of each job is evaluated by a fuzzy inference system described below.

In each generation of GA, when an individual is decoded and evaluated, we
obtain the completion time of each job under the corresponding schedule. With
this information, here we define:

– The relative distance between job i’s completion time and its due-date:
gi =

(
F̃i − di

)/
di, where di and F̃i respectively denote job i’s due-date

and completion time under the current schedule;
– The relative slack time of job i: hi =

(
di − C

(0)
i −

∑
j∈J′

i
pj

)/
di, where C

(0)
i

refers to the completion time of the currently considered operation of job i
and also the release time of J ′i which is the set of its succeeding operations
in job i. Note that hi corresponds to specific operations of job i and thus
reflects the different processing stages of the job;

– Normalized tardiness weight of each job: vi = w̄i =
(wi − wmin)/(wmax − wmin), where wmax = max1≤i≤n wi, wmin =
min1≤i≤n wi.

Based on these variables, a fuzzy controller is designed to calculate the JBN
value.

1. Input / output variables
The fuzzy controller takes gi, hi and vi as input variables, and outputs the
JBN value for each job. In the fuzzy inference system, the four input/output
linguistic variables are respectively denoted by G, H , V and B, and are
divided into three fuzzy sets as follows.



150 R. Zhang and C. Wu

– G, H = {NL, Z, PL}, i.e. {Negative, Around Zero, Positive};
– V = {S, M, L}, i.e. {Small, Medium, Large};
– B = {NB, MB, B}, i.e. {Not a bottleneck job, Maybe a bottleneck job,

A bottleneck job}.
2. Definition of membership functions

In this fuzzy controller, all membership functions are chosen to have sym-
metrical triangular distributions, so we only have to determine the two end
points. For example, if one of the linguistic variables discussed above is de-
scribed as {(−∞, a, b); (b, c); (c, d, +∞)}, then the three corresponding mem-
bership functions are displayed in Fig. 1.

ba c d x

( )x

1

Fig. 1. The membership functions adopted by the fuzzy controller

3. The fuzzy rules
Bottleneck jobs are those jobs that need to be considered with higher priority
in the optimization process because such jobs can have a significant role to
play in improving the overall performance measures.
In practical shop scheduling practices, there exists certain human experience
that indicates which jobs should have higher priority under different circum-
stances. After further abstraction, this kind of knowledge can be expressed
in terms of fuzzy rules which have the form of “If. . . , then. . . ”. For example,
“If G = PL, H = NL and V = L, then B = B” means that if under the
current schedule, a certain job has relatively large tardiness and relatively
small slack time, and its weight is large, then this job should be regarded as
a bottleneck job.
According to such priori knowledge, we obtain the fuzzy rule table shown in
Table 1 by enumerating all possible and feasible combinations of the input
variables. These rules try to reflect the basic properties of bottleneck jobs
from different perspectives.

4. The inference system and defuzzification
The fuzzy inference system based on the 18 rules in Table 1 adopts the
Mamdani model, in which the T-norm is implemented by the “min” opera-
tor. Since the output bottleneck characteristic value should be a quantifiable
number, here we use the smallest-of-maximum ZSOM [12] as the defuzzifica-
tion method.



An Immune Genetic Algorithm Based on Bottleneck Jobs 151

Table 1. The fuzzy rule table

�����G, H
V

S M L

NL, PL NB NB NB
Z, Z MB B B

Z, PL NB NB MB
PL, NL B B B
PL, Z MB B B

PL, PL NB MB MB

By applying the above fuzzy inference process to a selected individual in the
current population, we obtain the bottleneck characteristic values {JBNi}n

i=1
for each job which are then used to design an immune operator that accelerates
the optimization process of GA.

Particularly, the bottleneck characteristic values defined in this paper have
the following important features:

(1) The definition of bottleneck reflects the characteristics of the scheduling
objective function. Substantially different from the existing bottleneck iden-
tification methods based on machine workload or idle time, our proposed ap-
proach aims at the final scheduling performance and depicts the bottleneck
in attempts to improve the performance measures. Therefore, bottleneck
jobs should vary when the optimization objective changes.

(2) The bottleneck characteristic values reflect the characteristics of different
optimization stages. In the evolutionary process of GA, the individuals keep
changing under genetic operators. The proposed bottleneck characteristic
values are valid only for the current state of an individual, and depict the
bottleneck jobs in attempts to improve this individual in the subsequent op-
timization process. Therefore, bottleneck jobs should vary as the population
evolves.

3.2 The Immune Genetic Algorithm Based on Bottleneck Jobs

To solve the job shop scheduling problem with the objective of minimizing to-
tal weighted tardiness, we design an immune genetic algorithm that utilizes the
bottleneck characteristic information acquired by the aforementioned fuzzy in-
ference system. The key steps in the algorithm are the construction and the
application of the immune operator.

1. Encoding
The encoding scheme is based on operation priority lists. An individual re-
lates each machine with a priority list of n operations to be processed on this
machine. Note that after the decoding procedure, the actual processing or-
der of operations in the final feasible schedule may differ from these priority
lists.
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2. Initialization
Here we design a heuristic method to produce the initial population. For
each operation, the SLACK index is defined as θi = di −

∑
j∈Ji

pj , where∑
j∈Ji

pj is the total processing time of job i.
Then, we define a priority index α for each operation as

αi =
(
2 − θ̄i

)
(1 + w̄i) , θ̄i, w̄i ∈ [0, 1],

where θ̄ and w̄ denote normalized values, i.e., x̄i =
(xi − xmin)/(xmax − xmin), xmin = mini∈N xi, xmax = maxi∈N xi,
x ∈ {θ, w}.
Finally, we sort all the operations in a non-increasing order of α, and by
assigning the operations to their processing machines according to their order
in this sequence, we obtain the priority lists as one initial solution for GA.
The other individuals in the population are formed by random permutation
of operations based on this solution.

3. Mutation
For a selected individual under the mutation probability, we first calculate
the potential weighted tardiness of each machine in the corresponding sched-
ule as

PWTi =
∑

j∈Ni

wj ·
[
(Cj − LDDj)

+ −
(
Ci pre(j) − LDDi pre(j)

)]
,

where N i is the set of operations to be processed on machine i; Cj is the
completion time of operation j and wj is the weight of its corresponding
job; i pre(j) refers to the immediate job predecessor of operation j; LDDj

is defined as LDDj = dj −
∑

l∈JS(j) pl (JS(j) is the set of job successors
of operation j) and refers to the latest finishing time of operation j in the
event that no tardiness is allowed.
PWTi reflects the performance of the current schedule on machine i, and
therefore if we focus the optimization operations more on those machines
with higher PWT values, it is more likely to obtain performance improve-
ments. So proportional method (Roulette Wheel Selection) is adopted here
for the selection of machines, i.e., machine j is selected with probability
PM

j = PWTj/
∑m

k=1 PWTk. Finally, the SWAP operator is applied to ex-
change two operations in the selected machine’s priority list, which imple-
ments the mutation operator.

4. Crossover
Under the crossover probability, each crossover is performed using the LOX
operator to a randomly selected individual and the best individual in the
current population. In particular, we first select a machine according to PM

j

defined above and then apply LOX to the two operation lists on the selected
machine.

5. Decoding and evaluation
The decoding process concerns iteratively scheduling the ready operations
(whose preceding operations have been scheduled) according to their priority
order and as early as possible.
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6. The immune operator
(a) Selection of the vaccine

In practical scheduling experiences, the jobs (those with larger JBN
values) which are likely to cause deterioration to the scheduling perfor-
mance measures are usually scheduled with a higher preference while
the relatively safer jobs (those with smaller JBN values) are sometimes
postponed to certain extent. Although this priori knowledge cannot guar-
antee the global optimality of the obtained schedule, it is a sensible choice
when only a small fraction of the jobs are considered at a local level.
Hence, in a satisfactory schedule for the original problem, there should
exist a large number of operations whose processing orders are consistent
with this priori knowledge, i.e., urgent operations are processed before
moderate operations. Such properties may be used as characteristic in-
formation in the course of problem solving and act as an approach to
abstracting a vaccine.

(b) The vaccination process
Step 1: Under the immune probability, choose an individual from

the current population, apply the above-mentioned PWT -
based roulette wheel selection to select a machine, and ran-
domly choose an operation Ok from its priority list. Calculate
{JBNi}n

i=1 for all the operations on this machine.
Step 2: Evaluate i1 = arg maxi∈Np(k)

{
(JBNk − JBNi)

+
}
, where

Np(k) denotes the set of operations that are before Ok in the
priority list.

Step 3: Evaluate i2 = arg maxi∈Ns(k)

{
(JBNi − JBNk)+

}
, where

N s(k) denotes the set of operations that are after Ok in the
priority list.

Step 4: Let i∗ = arg maxi∈{i1,i2} {|JBNk − JBNi|}, and then swap Ok

and Oi∗ in the priority list.
(c) The function of the immune operator

The vaccination is performed after the crossover and mutation procedure
to a selected portion of individuals in the current population. When the
vaccination for an individual is finished, we evaluate the fitness of the
new individual, and if its fitness is improved, the new individual will be
kept down to the next generation, otherwise this vaccination is discarded
and the individual will be restored.

4 Computational Results

4.1 Testing Problem Generation and the Algorithm Parameters

To test the effectiveness of our proposed algorithm (referred to as IGA-BJ),
we randomly generate different-scale job shop scheduling problem instances1

1 Because the discussed optimization objective is total weighted tardiness in this paper,
the standard JSSP benchmark instances (from OR-Lib) which don’t include due-date
and tardiness weight information are not used here.
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in which the route of each job is a random permutation of m machines and
the (integral) processing time of each operation follows a uniform distribution
U (1, 99). The due-date of each job is obtained by a series of simulation runs which
apply different priority rules (such as SPT, SRPT, etc.) to the machines and
finally we take the average completion time of each job among these simulations
as its due-date. The (integral) tardiness weight of each job is generated from a
uniform distribution U (1, 10).

The membership functions of the fuzzy inference system for calculating JBN
values are:

– {(0.1, 0.3); (0.3, 0.7); (0.7, 1)} for linguistic variable V ;
– {(−1, −0.2); (−0.2, 0.2); (0.2, 1, +∞)} for linguistic variable G;
– {(−∞, −1, −0.2); (−0.2, 0.2); (0.2, 1)} for linguistic variable H and
– {(0, 0.1); (0.1, 0.6); (0.6, 1)} for output B.

The parameters for IGA-BJ are chosen as:

(1) the mutation probability pm = 0.5,
(2) the crossover probability pc = 0.8,
(3) the immune probability pi = 0.8,
(4) the population size PS = 30, and
(5) the number of generations GN = 20.

4.2 Numerical Computations and Comparison

We compare the proposed IGA-BJ with a standard genetic algorithm using
operation-based encoding scheme (SGA) and the hybrid optimization strategy
for job shop problems (GASA) presented in [13]. The GASA approach incorpo-
rates simulated annealing mechanism into the crossover operator and therefore
accepts offspring individuals with probability min {1, exp (−Δf/t)}. The popu-
lation size for SGA and GASA is chosen as PS′ = 40, and other parameters are
identical with those of IGA-BJ.

The results for 10 different-scale problems are shown in Table 2. In this table,
we see that for small-scale instances (whose number of operations doesn’t exceed
200), the difference between the three algorithms is trivial. But as the problem
size grows, the advantage of the two hybrid approaches becomes apparent. For
most problem instances, GASA and IGA-BJ achieve better results than SGA.
Moreover, IGA-BJ obtains smaller WT than GASA for 8 out of the 10 instances,
with the largest improvement rate as high as 14% (for instance 8). It is also
observed that for problems where the ratio of job number to machine number
(i.e., n/m) is relatively large, IGA-BJ results in more improvement, which shows
the effectiveness of the immune operator based on bottleneck jobs in the course
of GA search.

If we define the relative performance improvement ratio for IGA-BJ as

PIRIGA−BJ =
fGASA − fIGA−BJ

fSGA − fIGA−BJ
,
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Table 2. Performance of IGA-BJ on different-scale scheduling instances

No. Size (n × m)
SGA IGA-BJ GASA

WT a WTmin
b Timec WT WTmin Time WT WTmin Time

1 10 × 10 21.8 19 3.0 21.4 18 6.3 21.5 18 4.2
2 20 × 5 180.7 172 2.6 184.3 170 6.1 185.5 166 3.5
3 10 × 20 92.1 85 9.4 90.4 82 19.5 89.5 83 14.7
4 20 × 10 284.2 271 9.0 280.8 256 17.9 283.6 263 13.1
5 20 × 15 278.4 264 16.3 273.0 260 29.4 272.8 252 26.4
6 50 × 6 191.4 183 15.8 178.4 152 28.1 189.3 159 24.5
7 20 × 20 563.5 525 43.9 521.7 517 74.8 551.9 531 64.0
8 40 × 10 2240.8 1976 41.6 1860.3 1841 67.6 2149.4 1828 63.4
9 50 × 10 1786.3 1583 59.3 1579.2 1428 80.3 1594.0 1479 78.4
10 100 × 5 9254.8 8747 58.0 8699.7 8530 78.2 8907.3 8604 77.9

a WT refers to the average total weighted tardiness of the obtained schedules by the
algorithm in 10 consecutive runs.

b WTmin refers to the best (minimum) total weighted tardiness of the obtained sched-
ules by the algorithm in 10 consecutive runs.

c Time (in seconds) is the average running time of the program on a P4-2.0 GHz /
Windows XP platform.

where fX refers to the average optimization result obtained by algorithm X (as
is shown in Table 2), then the above computational results can be transformed
into a histogram in Fig. 2.

From Fig. 2, we see that IGA-BJ achieves better improvement for medium-
scale and larger-scale problems. When the total number of operations reaches
500, however, the exponential expansion of search space means that it’s in-
creasingly difficult for pure heuristic search algorithms to obtain high-quality
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Fig. 2. The relative performance improvement of IGA-BJ
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schedules. In this case, decomposition-based optimization algorithms (e.g., [14]
and [10]) might be used in future research and the proposed IGA-BJ can serve
as an optimization module to deal with each subproblem in the decomposition-
optimization framework.

Finally, to provide a closer observation for the impact of the immune operator
on the optimization process, we provide two typical converging curves that occur
in the course of solving problem 7 in Fig. 3.

In the future research, we will further statistically compare the performance
difference between our algorithm and some of the most recent meta-heuristic
approaches, such as [15], [16] and [4].

5 Conclusion

In this paper, a genetic algorithm based on bottleneck characteristic informa-
tion for solving job shop scheduling problems is proposed. The defined bottleneck
characteristic values reflect both the properties of the objective function and the
most crucial jobs at different stages of the optimization process. The bottleneck
information is extracted and used as an immune operator to increase the con-
verging speed of GA. Numerical computational results show that the proposed
algorithm is effective. Moreover, the results of this paper are also promising for
due-date-related scheduling problems in practical manufacturing environment.
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5. Larrañaga, P., Lozano, J.A.: Estimation of Distribution Algorithms: A New Tool
for Evolutionary Optimization. Kluwer Academic Publishers, Boston (2002)

6. Jiao, L., Wang, L.: A novel genetic algorithm based on immunity. IEEE Transac-
tions on Systems, Man and Cybernetics, Part A 30(5), 552–561 (2000)

7. Adams, J., Balas, E., Zawack, D.: The shifting bottleneck procedure for job shop
scheduling. Management Science 34(3), 391–401 (1988)

8. Roser, C., Nakano, M., Tanaka, M.: Shifting bottleneck detection. In: Proceedings
of the Winter Simulation Conference, pp. 1079–1086 (2002)

9. Varela, R., Vela, C.R., Puente, J., Gomez, A.: A knowledge-based evolutionary
strategy for scheduling problems with bottlenecks. European Journal of Opera-
tional Research 145(1), 57–71 (2003)

10. Wu, S.D., Byeon, E.S., Storer, R.H.: A graph-theoretic decomposition of the
job shop scheduling problem to achieve scheduling robustness. Operations Re-
search 47(1), 113–124 (1999)

11. Jain, A.S., Meeran, S.: Deterministic job-shop scheduling: Past, present and future.
European Journal of Operational Research 113(2), 390–434 (1999)

12. Jang, J.S.R., Sun, C.T., Mizutani, E.: Neuro-Fuzzy and Soft Computing. Prentice-
Hall, Englewood Cliffs (1997)

13. Zhang, C.Y., Li, P.G., Rao, Y.Q., Li, S.X.: A new hybrid GA/SA algorithm for the
job shop scheduling problem. In: Raidl, G.R., Gottlieb, J. (eds.) EvoCOP 2005.
LNCS, vol. 3448, pp. 246–259. Springer, Heidelberg (2005)

14. Singer, M.: Decomposition methods for large job shops. Computers and Operations
Research 28(3), 193–207 (2001)

15. Zhang, C.Y., Li, P.G., Rao, Y.Q., Guan, Z.L.: A very fast TS/SA algorithm for
the job shop scheduling problem. Computers & Operations Research 35, 282–294
(2008)

16. Huang, K.L., Liao, C.J.: Ant colony optimization combined with taboo search for
the job shop scheduling problem. Computers & Operations Research 35, 1030–1046
(2008)



Improved Construction Heuristics and
Iterated Local Search for the Routing and

Wavelength Assignment Problem

Kerstin Bauer1, Thomas Fischer1, Sven O. Krumke2, Katharina Gerhardt2,
Stephan Westphal2, and Peter Merz1

1 Department of Computer Science
University of Kaiserslautern, Germany

{k_bauer,fischer,pmerz}@informatik.uni-kl.de
2 Department of Mathematics

University of Kaiserslautern, Germany
{krumke,gerhardt,westphal}@mathematik.uni-kl.de

Abstract. This paper deals with the design of improved construction
heuristics and iterated local search for the Routing and Wavelength As-
signment problem (RWA). Given a physical network and a set of com-
munication requests, the static RWA deals with the problem of assigning
suitable paths and wavelengths to the requests. We introduce bench-
mark instances from the SND library to the RWA and argue that these
instances are more challenging than previously used random instances.
We analyze the properties of several instances in detail and propose an
improved construction heuristic to handle ‘problematic’ instances. Our
iterated local search finds the optimum for most instances.

1 Introduction

The Routing and Wavelength Assignment problem (RWA) deals with Wavelength
Division Multiplexed (WDM) optical networks, where communication requests
between nodes in a network have to be fulfilled by routing them on optical fiber
links with a given capacity. Chlamtac et al . [1] showed the static RWA in general
networks to be NP-complete since it contains the graph-coloring problem.

The problem is defined as follows: Given is a graph G(V, E, W ) with nodes V ,
arcs E and wavelengths W . An arc e ∈ E is an optical fiber link in the physical
network, where each wavelength λ ∈ W is eligible. A request ri = (vs

i , v
t
i , di)

connects nodes vs
i and vt

i having a demand of di ∈ N
+. For each unit of demand

a lightpath between the request’s endpoints has to be established. A lightpath is
an optical path between two nodes created by the allocation of the same wave-
length throughout the path of optical fiber links providing a ‘circuit-switched’
interconnection. Lightpaths have to fulfill two constraints: The wavelength con-
flict constraint defines that each wavelength on a physical link is used by at most
one lightpath at the same time. The wavelength continuity constraint requires a
lightpath to use the same wavelength on each link. There are problem variants

J. van Hemert and C. Cotta (Eds.): EvoCOP 2008, LNCS 4972, pp. 158–169, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Fig. 1. Example for the RWA, using three wave-
lengths (different line styles) to route the requests
{(1, 5, 2), (1, 4, 1), (2, 4, 1)}. The first request uses
the dashed lightpath 〈1, 3, 5〉 and dotted path
〈1, 2, 4, 5〉, the second request uses the solid path
〈1, 3, 4〉 and the last request uses the dashed path
〈2, 4〉. Physical links are shaded in light gray.

relaxing these constraints: The first constraint can be relaxed by multiple-fiber
links [2], the latter constraint can be relaxed by introducing wavelength convert-
ers [3] which change the wavelength of a lightpath at selected nodes.

The RWA can be seen as a static (static lightpath establishment, SLE) or a
dynamic (dynamic lightpath establishment, DLE) problem. Furthermore, there
are different types of cost functions available for the RWA. In the static case,
a set of requests to be routed in parallel is known a priori and the objective is
to find lightpaths for all requests minimizing the number of used wavelengths.
In the dynamic case, time-bounded requests turn up over time, the routing has
to be decided on-line, and the objective is to maximize the number of routed
requests. In this paper, we focus on the static minimization problem.

First, we present related work on the static RWA and iterated local search.
In Sec. 2 we give a formulation for the static RWA’s lower bounds. Section 3 de-
scribes the used benchmark instances and our improved construction heuristics.
In Sec. 4 we discuss a local search for the RWA, embedded into our iterated local
search in Sec. 5. Finally, we draw conclusions and present ideas for future work.

1.1 Related Work

Ozdaglar and Bertsekas [4] present a Linear Programming (LP) approach to
the RWA. Here, the RWA is represented as a multicommodity network flow
problem with additional constraints. Additional constraints vary for setups with
no, sparse, or full wavelength conversion. The LP formulations are similar to
our formulation (Sec. 2), except that the authors use a piecewise linear cost
function and limit the maximum number of wavelengths, whereas we assume
constant link costs of 1 and impose no limit on the wavelengths to guarantee
feasibility.

A memetic algorithm is presented by Sinclair [5] including a mutation op-
erator, recombination (exchange a subset of paths between parents, reassign
wavelengths) and two local search operators. The fitness function is rather com-
plicated considering link length, link usage, node degree, and more. The first local
search (called ‘path reroute’) reroutes a request in a wavelength with smaller in-
dex using one of the k-shortest paths, whereas the second local search (‘path
shift-out’) assigns a path to another wavelength, but shifts out conflicting paths
first. The network model uses the concept of several fibers on one physical link.
Although this approach is said to perform well, the large population size (500)
and the vast number of generations (100 000) question its efficiency.
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Another approach for the RWA on general graphs is splitting the problem into
subproblems for routing and wavelength assignment, respectively. An extensive
overview on this approach is provided in [6] by Zang et al . and in [7] by Choi et al.

The static RWA is an NP-complete problem, for which we present an iter-
ated local search algorithm. Iterated Local Search (ILS) [8] describes a class of
algorithms that build a sequence of solutions using an embedded local search
(LS) algorithm. To leave local optima, results of the embedded algorithm may
be perturbated e. g. by a random mutation which moves the current solution to a
different part of the search space allowing the LS to find other (hopefully better)
local optima. LS [9] is an algorithm class defining for each solution a neighbor-
hood, which is a subset of the solution space and contains all solutions which
differ from the current solution in some selected aspect. In each iteration, the
algorithm evaluates the current solution’s neighborhood to choose a new solution
and thus performs a random walk in the search space. Both neighborhood and
moving strategy influence the LS’s performance. Furthermore, LS algorithms are
incomplete (finding optimal solutions is not guaranteed) and get stuck in local
optima requiring diversification.

2 Lower Bounds

To evaluate our solutions’ quality, we determined lower bounds by solving a
relaxation of the RWA. Disregarding the wavelength continuity constraint, the
RWA reduces to a multicommodity flow problem as follows. For each request r ∈
R we have commodity which needs to be routed by means of flow through the
network G. The mass balance dr

v required for request r at node v is −di if v = si,
+di, if v = ti and zero otherwise. Let variable xr

(i,j) indicate the amount of flow
from request r sent over the edge (i, j) ∈ E. Then, the problem of minimizing
the maximum flow sent over an edge can be stated as:

min max
(u,v)∈E

∑
r∈R

xr
(u,v) +

∑
r∈R

xr
(v,u)

∑
u∈V :(u,v)∈E

xr
(u,v) −

∑
u∈V :(v,u)∈E

xr
(v,u) = dr

v ∀v ∈ V, r ∈ R (1)

xr
(u,v)+xr

(v,u) ≤ dr
v ∀r ∈ R, (i, j) ∈ E (2)

xr
(u,v) ∈ N ∀r ∈ R, (u, v) ∈ E

The objective is to minimize the maximum load of any edge in the network.
Constraints (1) are flow-conservation constraints ensuring each request in the
demand is fulfilled. Constraints (2) ensure that the flow for a request traverses
an edge (u, v) only in one direction.

3 Benchmark Instances and Construction Algorithms

Solutions can be represented by a mapping from requests to sets of wavelength-
path combinations. As our objective has the prerequisite of fulfilling all requests
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completely, an equivalent representation can be achieved by setting the requests’
demands to 1, but allowing multiple requests for the same node pair. Therefore
w. l. o. g., for the course of this paper every request has a demand of exactly one.

A proposal for a construction algorithm is given in [10]. Requests are processed
iteratively by assigning each request a wavelength and a path depending on one
of the strategies below. Initially, one wavelength is available, but the number of
wavelengths is increased when no path can be found for a request.

First Fit (FF_RWA). Requests are ordered randomly and will be routed in
the first wavelength with a feasible (shortest) path.

Best Fit (BF_RWA). Requests are ordered randomly and will be routed in
the wavelength with the shortest feasible path.

First Fit Decreasing (FFD_RWA). Requests are sorted non-increasingly
by the length of each request’s shortest path in G and will be routed in
the first wavelength with a feasible path.

Best Fit Decreasing (BFD_RWA). Requests are sorted non-increasingly
by the length of each request’s shortest path in G and will be routed in
the wavelength with the shortest feasible path.

Experimental results in [10] indicate that BFD_RWA finds best results. Here,
all test instances were constructed by the Erdős-Rényi random graph model
G(n, p) [11], where each possible edge (i, j) is chosen with probability p = δ

n−1
independently from all other edges (where n = |V | and δ is the expected node
degree) and only connected graphs are accepted. In a second step the graph
is made bidirectional by replacing each undirected edge by a pair of antipar-
allel directed edges. The demand between each pair of nodes (i, j) ((i, j) and
(j, i) are considered as different node pairs) was set to 1 by a given probability
between 0.2 and 1.0. Similar instances have been used in other publications,
e. g. [12,13].

Our own preliminary experiments with this graph model and demand ma-
trix (in our setting, however, edges can be used in both directions and thus
are not replaced by a pair of unidirectional edges) indicate that this type of
instance is completely uninteresting due to two facts: First, the demand is so
small that construction algorithms as above already give (near-)optimal solu-
tions. In a preliminary experiment, we generated a G(n, p) instance with 50
nodes, δ = 3, and probability for a request between a node pair of p = 0.4,
where the BFD_RWA construction heuristic found a solution whose quality
equals the lower bound (Sec. 2). Second, the underlying graph is ‘pathological’
in most cases. We call a graph pathological if it is only 1-edge connected, i. e.
it contains at least one bridge. To illustrate the high probability of getting a
pathological graph by the Erdős-Rényi random graph model, consider a graph
G(100, δ=3). Here it is rather improbable that a graph with a connectivity of
degree > 1 will be generated. The probability of one special node being a leaf
is already

(
1 − 3

99

)98 ·
( 3

99

)1 · 99 = 0.147 indicating that the probability of an
at least 2-edge connected graph is very small [14]. Every request depending on
such a bridge automatically requires an additional wavelength increasing the
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Table 1. Properties of instances from SNDlib [15]. ‘Pairs’ describes the number of node
pairs communicating with each other, ‘Requests’ summarizes the demand volume.

Instance Nodes Edges Pairs Requests Lower Bound

atlanta† 15 22 210 6840 1256

france† 25 45 300 10008 1060
germany50 50 88 662 2365 147

janos-us-ca† 39 122 1482 10173 1288
newyork 16 49 240 1774 85
nobel-eu 28 41 378 1898 304
nobel-germany 17 26 121 660 85
nobel-us 14 21 91 5420 670
norway 27 51 702 5348 543
pdh 11 34 24 4621 214
polska 12 18 66 9943 1682
zib54 54 81 1501 12230 705

† Instance has been modified, see text for details.

total number of wavelengths, although previously allocated wavelengths still
have a lot of free links.

Instead of generating random instances as described above, we used standard
benchmark instances from the SNDlib collection [15]. This collection consists
of 22 networks and a set of associated models which can be used as problem
instances for the Survivable Network Design problem. The data was derived
from industrial and research background. A network is described by nodes,

Fig. 2. Instance germany50 based
on 50 cities in Germany

(physical) links, demands, and other, for our
problem irrelevant planning data. From this
collection we chose 12 networks as listed in
Tab. 1. We restricted our selection as the other
instances were either uninteresting for sophis-
ticated algorithms or exceeded our available
system capacities. To include some large in-
stances, we scaled down the demand ma-
trices of instances atlanta, france, and
janos-us-ca by a factor of 20, 10, and 200,
respectively. For the benchmark instances, ca-
pacity constraints and predefined admissible
paths were not used and edge costs were fixed
to 1. Edges were interpreted to be bidirec-
tional and all demands between node pairs
(i, j) and (j, i) were summed up to a unidirec-
tional demand. The graph of instance nobel-us corresponds to the well-known
NSF network with 14 nodes.

Our preliminary experiments indicated that the structure of the graph is not
the only limiting factor for the solution quality. Additional problems arise if the
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requests’ load is unbalanced distributed among the node pairs. Given a node
with degree δ, in each wavelength this node can handle at most δ requests, es-
pecially requests starting or ending in this node. In instance germany50 (Fig. 2),
the highlighted node has a node degree of 2 and 43 requests start here with a
summarized demand of 293. This leads to the lower bound � 293

2 � = 147, which
equals the solution found by our iterated local search (Sec. 5) and the lower
bound given by the multicommodity flow solution (Tab. 1).

We classify requests depending on overloaded edges as ‘evil’ requests. The
influence of evil requests can best be observed for instances where an unfavorable
combination of graph and request set leads to some heavily overloaded edges.
These observations motivate a new approach of the construction heuristic. In
this new approach, evil requests are preferably routed during the construction
phase. For our experiments we consider three different sorting strategies. Other
combinations of the components Len, Anti and Evil are also possible but will
not be considered further.

Len. Requests are ordered non-increasingly by the length of their shortest path,
equals BFD_RWA.

AntiEvil. Evil requests are routed first, otherwise using a random sorting.
LenAntiEvil. Requests are first sorted by Len and within each set of requests

with equal shortest path length by AntiEvil.
AntiEvilLen. Requests are first sorted by AntiEvil and within the evil and

non-evil requests, respectively, by Len.
Shuffle Requests are ordered in a random fashion.

To locate evil requests for a given graph and set of requests, we propose the
following method. In the first step, an initial solution is constructed with the
standard BFD_RWA algorithm and all edges e ∈ E′ heavily used in marginally
used wavelengths are taken as candidates for overloaded edges. We define margin-
ally used wavelengths as wavelengths whose usage lies below a multiple k of the
average path length. In a second step requests are marked as evil requests, if they
cannot be routed in G \ E′ (Fig. 3). Here, u(s, λ) calculates the actual load of
wavelength λ (number of used physical links), use(s, W ′, e) describes how often
edge e is used in solution s restricted to wavelengths W ′, and routeable(G, r)
checks if request r is physically routeable in G.

1: function FindEvilRequests(Graph G, Requests R, k ∈ R)
2: s ← BFD_RWA(G, R) � Construct a BFD_RWA solution
3: n ← k · �avgr∈R l(pG,s(r))� � n is the k times the average path length in s
4: E ← ∅ � Set of possibly overloaded edges
5: W ′ ← {λ ∈ W : u(s, λ) < n} � Set of marginally used wavelengths
6: for all e ∈ E do
7: if use(s, W ′, e) > |W ′| − 2 then � is e used in > |W ′| − 2 wavel. of W ′?
8: E′ ← E′ ∪ {e} � store overloaded edge
9: return {r ∈ R : ¬routeable(G \ E′, r)}

Fig. 3. Determination of Evil Requests
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Table 2. Construction heuristic’s results (minimum and average over 50 runs)

Len LenAntiEvil AntiEvilLen AntiEvil Shuffle
Instance min avg min avg min avg min avg min avg

atlanta 1415 1473.7 1417 1474.0 1424 1518.0 1460 1556.5 1457 1524.8
france 1091 1115.1 1095 1120.2 1094 1131.7 1110 1175.3 1105 1164.6
germany50 185 193.2 185 190.8 165 166.4 161 164.3 163 172.9
janos-us-ca 1781 1806.7 1764 1791.3 1495 1507.2 1523 1567.3 1522 1611.7
newyork 92 96.9 91 97.4 91 96.4 95 100.5 93 101.3
nobel-eu 304 304.2 304 304.0 304 304.0 304 305.5 304 310.3
nobel-germany 91 94.0 92 94.1 91 94.5 93 98.8 92 99.7
nobel-us 827 892.1 812 885.7 836 890.1 805 877.7 835 898.6
norway 555 564.8 557 564.7 559 568.5 570 586.8 570 585.0
pdh 267 298.0 275 296.4 271 298.7 257 297.0 268 291.6
polska 1750 1836.1 1747 1861.6 1788 1943.1 1842 2010.7 1855 1971.9
zib54 824 903.7 816 884.2 825 892.2 827 947.6 854 983.3

3.1 Experimental Results

All problem instances in Tab. 1 were solved by the construction heuristics Len,
LenAntiEvil, AntiEvilLen, AntiEvil and Shuffle. Each experiment was repeated
with 50 seeds, the results (minimum and average) are summarized in Tab. 2.

As can be seen in Tab. 2, there exists no clear preference between the sort-
ing strategies Len and LenAntiEvil (except for germany50 and janos-us-ca,
the confidence intervals overlap). Instances germany50, janos-us-ca, nobel-us,
and pdh perform better with the sorting strategy AntiEvil than with Len or
LenAntiEvil regarding the best solution, however, only for janos-us-ca and
germany50 there is a significant difference (99 %). E. g. the best solution for
germany50 using AntiEvil is 13.0 % better than using Len or LenAntiEvil. We
observed that for these instances the least used wavelengths in solutions built
using Len contain only a few, similar paths indicating that the underlying re-
quest matrix is unbalanced and thus yields some heavily overloaded edges. E. g.
in one selected solution for germany50, a request having a demand of 76 uses 32
wavelengths used by no other request to route 63 lightpaths. As long as there
exist few evil requests, AntiEvilLen nearly matches with the sorting strategy Len
and thus has quite a similar but slightly worse performance. For the instances
where AntiEvil performs well, no clear preference can be made between AntiEvil
and AntiEvilLen. Thus, for unknown instances our experiments indicate first to
try both strategies Len and AntiEvil and then depending on which strategy
performs better to construct the final solutions either with Len/LenAntiEvil or
with AntiEvil/AntiEvilLen, respectively. However, there may be a large vari-
ance between different solutions from the same construction heuristic. E. g. for
nobel-us, the variance on the number of wavelengths ranges between 24.2 and
40.5 (not shown in Tab. 2). This suggests to construct several solutions to confirm
the decision for the best construction heuristic.



Improved Construction Heuristics and Iterated Local Search 165

1: procedure ShiftPaths(Solution s, Requests R)
2: for all r ∈ R do � for each request . . .
3: W ′ ← {λ ∈ W |ΨG,s(r, λ) 
= ∅} � find wavelengths in which r can be routed
4: λ ← arg maxλ∈W ′ u(s, λ) � find wavelength λ with maximum load
5: if u(s, λ) > u(s, λs(r)) then � compare usage of λ and request’s wavel.
6: λs(r) ← λ � set request’s new wavelength
7: pG,s(r) ← ΨG,s(r, λ) � request’s path set to shortest path in new wavel.

Fig. 4. Local Search moving path to wavelengths with higher load

4 Local Search

Although there is a large variety in solution quality among different request
sorting strategies and random seeds, in many cases the results are considerably
worse than the lower bounds motivating our local search (LS).

The general idea of our LS is to shift requests from less used wavelengths to
more often used wavelengths by looking for alternative (possibly longer) paths.
The algorithm (Fig. 4), which operates on a solution s and the set of requests
R, works as follows: For each request r ∈ R, the set of all wavelengths W ′ ⊆
W in which r is routeable is determined. Among all wavelengths in W ′, the
wavelength λ with highest load is chosen. If the load for λ is larger than the load
for the request’s current wavelength, then the request’s wavelength is set to λ
and the request’s path is updated with the shortest path in λ. Function ΨG,s(r, λ)
calculates the shortest path in G for request r routed in λ and function u(s, λ)
is introduced in Sec. 3. We define ΨG,s(r, λ) = ∅, iff there exists no such path.

4.1 Experimental Results

To evaluate the effectiveness of the LS, we performed multistart experiments
using the same setup as described in Sec. 3.1. We applied our LS ShiftPaths to
the 50 initial solutions of each construction heuristic setup until a local optimum
was reached. The results are summarized in Tab. 3 (best of 50).

When comparing our multistart LS algorithm to the construction heuristics,
the former performs only slightly better than the underlying construction heuris-
tic. E. g. for instance germany50, the construction heuristic’s best solution us-
ing Len is 185 (average 193.2), but the multistart LS’s best solution is only
184. A significance analysis (99 % confidence interval) shows that the multi-
start LS improves the construction heuristics only in 5 cases (france+Shuffle,
germany50+AntiEvil/AntiEvilLen, norway+AntiEvil/Shuffle).

This observation matched our expectations, as both the construction heuris-
tics and the LS follow similar strategies. The only difference is that the construc-
tion heuristics prefer shortest paths, whereas the LS allows to reroute requests
using longer paths if the load on wavelengths gets changed in respect of the opti-
mization criterion. Differences in the quality of solutions created by the various
construction heuristics cannot be compensated by the multistart LS.
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Table 3. Multistart local search’s results (best of 50 runs)

Instance Len LenAntiEvil AntiEvilLen AntiEvil Shuffle

atlanta 1414 1417 1424 1418 1430
france 1086 1092 1085 1102 1096
germany50 184 185 164 159 160
janos-us-ca 1781 1764 1494 1497 1495
newyork 92 90 91 92 92
nobel-eu 304 304 304 304 304
nobel-germany 91 91 91 91 89
nobel-us 827 804 808 787 802
norway 554 554 555 556 560
pdh 263 259 266 254 256
polska 1748 1747 1787 1827 1854
zib54 800 787 785 785 810

5 Iterated Local Search

As shown above, local search alone is not sufficient to considerably improve
the quality of the initial solutions. Thus, in order to escape from local optima,
we introduce an iterated local search (ILS) combining the local search with
a mutation (perturbation) operator which randomly changes paths within an
already existing solution (Fig. 5). In each mutation step, two wavelengths λ1
and λ2 are randomly chosen and an arbitrary request whose path p is routed
in the wavelength with lower usage (here, λ2) is taken. Paths preventing p from
being routed in wavelength λ1 are removed from the solution and p is routed in
λ1. The function rem(s, λ1, p) determines the paths to be removed and stores the
paths’ requests in R′. To restore a valid solution, all requests in R′ are rerouted
in the first possible wavelength.

We applied different mutation strategies to the ILS, where the strength is
defined by a percentage of the number of paths. Mutation strategies were ei-
ther constant (ranging between 1 % and 25 %) or variable, where the mutation
strength started with an initial high mutation rate (either 10 % or 25 %) and
decreased linearly (step width 1 % or 2 %) until reaching a strength of 1 %.

Within our ILS, we accept new solutions after mutation and local search
iff it is better (by length-lex ordering on wavelength usage vectors) than the
previous best solution, otherwise the previous best solution is restored. Length-
lex ordering sorts vectors first by length and then by lexicographic ordering.

5.1 Experimental Results

Due to similarities of Len and LenAntiEvil, we restrict the following discussion to
Len, AntiEvil, AntiEvilLen, and Shuffle. The number of generations was limited
to 50 as for most instances optimal solutions were found within this bound.
Experiments were repeated 50 times.
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1: procedure Mutate(Solution s, Requests R, strength)
2: for i = 1 . . . strength do
3: (λ1, λ2) ← RandomWavelengths
4: if u(s, λ1) < u(s, λ2) then
5: swap(λ1, λ2)

6: r ← rInWL(s, λ2, R) � get a request r with path p in wavelength λ2

7: p ← pG,s(r)
8: R′ ← rem(s, λ1, p) � remove paths stopping p from being routed in λ1

9: pG,s(r) ← p
10: λs(r) ← λ1

11: for all r ∈ R′ do � for all currently unrouted paths
12: λs(r) ← arg minλ∈W ΨG,s(r, λ) 
= ∅
13: pG,s(r) ← ΨG,s(r, λ) � route request on the first possible wavelength

Fig. 5. Mutation shifting path between wavelengths

Whereas LS without mutation is not powerful enough to improve initial solu-
tions, the ILS always improves them to the optimum for many instances (reach-
ing the LB from Sec. 2 and Tab. 1). Best results were achieved with a variable
mutation strategy, where the initial strength was set to 25 % decreasing by 2 %
each generation (25%↓2%, Tab. 4). In each setup, the ILS resulted in significantly
better results than the multistart LS (99 % confidence intervals).

Regarding the convergence towards the optimal solution, we observed two
different patterns. In the first case, the optimal solution was reached in a few
generations by setups with strong mutation, whereas setups with weak muta-
tion converged much slower. Instance atlanta (Fig. 6a) is an example for this
behavior, where the optimal solution is reached after about 15 generations for
strong mutation (25 %), after 40 generations for mutation strength 5 % and not

Table 4. Iterated Local Search’s results with minimum and average over 50 runs for
the mutation strategy starting at 25 % and decreasing by step width 2% (25%↓2 %)

Len AntiEvilLen AntiEvil Shuffle
Instance LB min avg min avg min avg min avg

atlanta 1256 1256 1256.5 1256 1256.4 1256 1256.3 1256 1256.2
france 1060 1061 1062.5 1060 1062.4 1060 1062.7 1061 1062.9
germany50 147 147 147.8 147 147.6 147 148.0 147 147.5
janos-us-ca 1288 1343 1351.4 1337 1347.5 1340 1357.8 1342 1358.4
newyork 85 85 85.1 85 85.2 85 85.0 85 85.2
nobel-eu 304 304 304.0 304 304.0 304 304.0 304 304.0
nobel-germany 85 85 86.2 86 86.5 85 86.4 86 86.4
nobel-us 670 684 689.3 685 689.3 684 689.3 684 688.6
norway 543 543 543.0 543 543.1 543 543.1 543 543.0
pdh 214 215 217.3 215 217.2 216 217.3 215 217.0
polska 1682 1682 1682.2 1682 1682.1 1682 1682.1 1682 1682.1
zib54 705 709 711.3 709 711.5 708 710.0 708 710.2
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Fig. 6. Performance plots for two ILS setups using different mutation strategies

reached for weak mutation (1 %) within 50 generations. In the second case, the
optimal solution was not reached by our ILS. Again, our mutation strategies
performed differently. Stronger mutations let the ILS converge faster, but, how-
ever, get stuck in weak local optima. Weaker mutation lead to slow convergence,
but end eventually in better solutions. Using dynamic mutation, our ILS con-
verges fast during the initial phase and later is able to continuously improve
its current solution. An example for this behavior is shown in Fig. 6b for prob-
lem instance janos-us-ca. The bump for line ‘25%↓2%’ is due to the dynamic
mutation strategy and varies for different parameters.

For 8 out of 12 benchmark instances our algorithm is able to find optimal
solutions, as it reaches the lower bound. Here, we can argue that the use of
wavelength converters will not result in solutions with less wavelengths, as the
lower bound is based on a relaxation assuming wavelength converters at ev-
ery node. For pdh and zib54, near-optimal solutions are found, and with more
generations our algorithm can find optimal solutions. Only for janos-us-ca and
nobel-us our ILS is not able to reach solutions close to the lower bound. Reasons
may be that these two problem instances are harder than the other instances or
that the lower bounds are considerably below the optimal solution.

6 Conclusion

In this paper we improved an existing construction heuristic and developed an
iterated local search for the static RWA. We adopted problem instances from
the SND library for the RWA and argued that these benchmark instances are
more interesting than previously used random instances.

As for some benchmark instances the BFD_RWA construction heuristic per-
formed badly, we subsequently suggested alternative request sorting strategies
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resulting in considerably better initial solutions. To further improve these so-
lutions, we introduced an ILS which finds provable optimal solutions for eight
instances and near-optimal solutions for two more instances.

Future work will focus on run-time optimizations for large instances. We are
evaluating a multi-level approach based on the scaling mechanism we used for
large problems in this paper. Furthermore, using don’t-look-bits on wavelengths
or requests to restrict the search space is another promising concept.
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Abstract. In this paper we study a complex real world workforce scheduling 
problem. We apply constructive search and variable neighbourhood search 
(VNS) metaheuristics and enhance these methods by using a variable fitness 
function. The variable fitness function (VFF) uses an evolutionary approach to 
evolve weights for each of the (multiple) objectives. The variable fitness func-
tion can potentially enhance any search based optimisation heuristic where mul-
tiple objectives can be defined through evolutionary changes in the search di-
rection. We show that the VFF significantly improves performance of construc-
tive and VNS approaches on training problems, and “learn” problem features 
which enhance the performance on unseen test problem instances.  

Keywords: Variable Fitness Function, Evolution, Heuristic, Meta-heuristic. 

1   Introduction 

Search gets stuck when local optima are reached, and there are no better neighboring 
solutions, but the solution is not globally optimal. While the global fitness function is 
ideally suited to an approach guaranteed to find an optimal solution, it is not adequate 
in assessing the fitness of a local move. Many metaheuristics allow escape from these 
local optima however they may ultimately fail at a higher level because of the nature 
of the global fitness function.  

The variable fitness function seeks to tackle this problem by redefining the fitness 
function so it may change over the course of the search. The result is that the local 
fitness function is different from the global fitness function and can be more effective 
than the global fitness function to assess local moves. [1] shows the variable fitness 
function’s effectiveness at enhancing local search heuristics and in this paper we 
attempt to show its ability to enhance a metaheuristics and to learn reusable informa-
tion to guide the search of a difficult optimization problem. The problem we study is a 
complex real world workforce scheduling problem which contains many scheduling 
problems from the literature as subproblems. Like many other real world problems  
it has many features that are hard to understand and model, and objectives that are 
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non-linear in nature. This can make it hard for a person to define a global fitness func-
tion, let alone one to describe how to assess the quality of local moves. We aim to 
show the variable fitness function’s ability to enhance the search when we solve this 
workforce scheduling problem using constructive search and Variable Neighborhood 
Search (VNS). 

In the next section, related work is discussed. In section 3 the variable fitness func-
tion is defined and section 4 describes the problem. In section 5 the computational 
experiments are presented and the results analysed. Finally, section 6 will draw  
conclusions. 

2   Related Work 

The variable fitness function (VFF) is a new search enhancement technique that can 
be used to enhance any search based optimization heuristic provided that a) the prob-
lem is multi-objective (or multiple objectives can be defined in some way) and b) we 
have CPU time available to use this process offline (although the resulting VFF can 
be used very quickly online). First presented in [1], the variable fitness function pro-
vides a simple scheme for encoding a piecewise linear function into a genetic algo-
rithm and a method for evolving these functions. The variable fitness functions are 
then used to determine the local fitness function at each step in the local search.  

Guided Local Search [2] also modifies the fitness function to change the direction 
when a local optimum has been found. Features of a solution are identified and penal-
ties for solutions exhibiting these features are increased when the solution is stuck in a 
local optimum. A feature which occurs in a local optimum has its penalty score in-
creased slightly, and these penalties are used to modify the fitness function, attempt-
ing to force the search to move in another direction. The primary differences between 
the VFF and Guided Local Search approaches are in their approaches to modifying 
the fitness function (evolutionary versus reinforcement learning), the fitness function 
objects that are being tuned (objectives versus features) and, most importantly, the 
ability of the Variable Fitness Function to be applied with no CPU time overhead for 
unseen test instances.  

The problem we study is based on a mobile workforce scheduling problem pre-
sented in [3,4]. It is a complex real workforce scheduling problem identified by 
@Road Ltd. and shares many complexities found in various other scheduling prob-
lems such as the Resource Constrained Project Scheduling Problem (RCPSP) and its 
variants [5], Job Shop Scheduling Problem (JSSP) [6] and its variants, along with 
other problems such as Vehicle Routing [7] and the Traveling Salesman Problem [8]. 
In [3], the problem’s multi objective nature was used to show the trade off between 
diversity and solution quality when using multi objective genetic algorithm compared 
to a genetic algorithm using weighted sum objective functions. In [4] the problem’s 
complexity was used to show that breaking the problem down into a very large num-
ber of smaller parts and then using another method to decide which of these smaller 
parts to solve, is a very effective way of solving large complex problems. 

[4] uses reduced Variable Neighborhood Search (rVNS) [9] amongst other heuris-
tics. rVNS is a faster form of Variable Neighbourhood Search. Variable Neighbour-
hood Search (VNS) [10] is based on the idea of systematically changing the 
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neighbourhood of a local search algorithm. Variable Neighbourhood Search enhances 
local search using a variety of neighbourhoods to “kick” the search into a new posi-
tion after it reaches a local optimum. Several variants of VNS exist as extensions to 
the VNS framework [9] which have been shown to work well on various optimisation 
problems. In our experience, VNS has the advantage for complex, real-world prob-
lems, of requiring limited additional effort, once a basic local search framework is 
established. 

3   The Variable Fitness Function 

The Variable Fitness Function [1] describes how the weights of a weighted sum  
fitness function change over the iterations of a search process. The variable fitness 
function is piecewise linear, describing the relative importance of objectives at each 
iteration. There are two variations: the standard variable fitness function fixes the 
number of discontinuities and the number of iterations between them and the adaptive 
variable fitness function allows the points of discontinuity to evolve along with the 
variable fitness function objective weights (Figure 1). Work so far provides evidence 
that the adaptive version is more effective than the fixed version, as more complex 
functions can be evolved [1]. 

For the adaptive variable fitness function, we define a set of weights {Wb,a} where 
a indexes the weight set (a=1…A) and b indexes the objective (b=1…B). We define 
Ia, the number of iterations between the weight sets. The variable fitness function is 
now defined as:  
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where iteration i occurs in the range from weight set c (starting at iteration j) to 
weight set c+1 (starting at iteration k) i.e. the linear interpolation of the weight of 
objective b for iteration i. 

Figure 1 shows an example adaptive variable fitness function. This describes how 
the weights change over the iterations, for example, that the weight of objective 1 
(W1) starts off at 2 (hence the objective is to be maximized) and then after iteration 
200 its importance starts to decrease and objective 3 (that has weight W3) is to be 
minimized, and its importance is higher at the start and end of the search process.  

3.1   Evolution 

Little work has been done in encoding piecewise linear functions such as these into 
chromosomes. [11] uses a complex encoding for polynomial expressions. The  
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Fig. 1. An example adaptive variable fitness function. (the number of iterations between the 
weight sets and the number of weight sets may vary). 

encoding is used to optimise a curve to fit a function described by a set of data points 
(and is not an appropriate method for the VFF). The evolution here is similar to work 
done on tuning of parameters for another algorithm using genetic algorithms [12]. 

When optimizing the weights of the variable fitness function, each weight in the 
variable fitness function appears as a gene in a GA chromosome. When the adaptive 
variable fitness function is used, the iterations between the weight sets are also in-
cluded. Figure 2 shows how the weight sets are mapped to the genes of a chromo-
some.  

W1,1 … W1,B I1 W1,1 … W1,B I1 … WA,1 … WA,B 

Fig. 2. Mapping the weights to a chromosome for an adaptive variable fitness function 

A modified version of 1 point crossover [13] will be used. It works the same way 
as normal 1-point crossover but the crossover point may only be on a weight set 
boundary. This method will keep mutually compatible weight sets together. The thick 
lines in Figure 2 show these crossover points. Each gene will have a chance to be 
mutated with a probability of pmut, the mutation rate. Mutation will simply mutate the 
value of the gene by a random variable normally distributed around 0 and with a stan-
dard deviation as predefined for each weight. Hence Wa,b is mutated by a value from 
the normal distribution N(0, Vb) with probability pmut. Where Vb is the standard devia-
tion of mutation associated with objective b and pmut is the probability of mutation 
which is the same for all alleles. This is similar to work done on mutation of artificial 
neural network weights evolved using GAs [14] where the network weight is mutated 
by a random number selected from a normal distribution. 

The initial population of variable fitness functions is generated randomly where Wa,b 
is picked uniformly at random out of the interval [Lb, Ub] for objective b. There is a 
padapt probability that the chromosome will change length. If a chromosome is to change 
length there is an equal probability it will either shrink or grow by one weight set. If it  
is to shrink, a random weight set is chosen and removed from the chromosome. If it is  
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to grow, a new weight set is inserted between two randomly chosen adjacent weight 
sets. The inserted weight set does not change the shape of the variable fitness function 
as it is inserted exactly half way between the two adjacent weight sets and has weight 
values that are the mean of the bordering weight sets. The new weight set is then mu-
tated. Lastly, the Ia genes also have a pmut probability of being mutated using the same 
method as the Wa,b genes. This gives the chromosomes a chance to get more and less 
complex and to also expand to more or less iterations. 

In our experiments, Lb and Ub will be -1 and 1 respectively (since objective values 
are normalized), Vb = 0.05(Ub – Lb), and  pmut= padapt=0.05 for all objectives b. These 
are known good values from previous work [1] and this previous work also shows 
that the sensitivity to parameters is low.  

4   The Case Study Problem and Solution Heuristics 

The problem we study is based on the workforce scheduling problem in [3]. The prob-
lem consists of assigning resources and time slots to geographically dispersed tasks. 
Tasks require various skills and resources possess these skills at different competen-
cies. Resources are mobile and must travel between tasks and to and from their 
“home” location at the end and start of the day. Tasks have a priority associated with 
them which indicates their urgency or the reward for completing the task. 

In the problem instances we study, 10 resources possess between 1 and 5 skills of 
which there are various bottlenecks in the availability. The resources travel at varying 
speeds. There are 300 tasks requiring between 0.5 and 1 hours to complete to be scheduled 
over 3 days and each has a 4 hour time window in which it must be completed. A task 
requires a resource to possess a certain skill, of which some skills are in more demand than 
others. Tasks are to be completed as early in the 4 hour time window as possible. Tasks 
have precedence constraints such that some task may not be started before another has 
completed. A chain of tasks is a subgraph of the precedence digraph of maximum inde-
gree 1 where the indegree (outdegree) of a task in the subgraph is one if the indegree (out-
degree) in the precedence digraph is greater than zero. 

For this is a real world complex problem there are many objectives. Table 1 lists 
some of the principal objectives we have identified. The global fitness function is 
defined as f = 5 (Scheduled High) + 2 (Scheduled Low) +(Complete Chains) – 0.1 
(Overrun), following reflection with our industrial collaborator. We use a constructive 
heuristic, CON, to build an initial schedule then an improvement metaheuristic, IMP, 
to improve it. 

Table 1. Objectives used for the workforce scheduling problem 

Objective Description 
Scheduled High The number of high priority tasks scheduled. 
Scheduled Low The number of low priority tasks scheduled. 
Complete Chains The number of task chains that have been completed. 
Travel Distance The total distance traveled by the resources. 
Travel Time The total time spent traveling by the resources 
Overrun The total number of hours the task have overrun. 
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For the improvement heuristic we have decided to use Variable Neighbourhood 
Search (VNS). VNS is relatively simple to implement and we have seen that this 
kind of method can work well for scheduling problems [1]. We use a local search 
heuristic where we define the neighborhood as schedules which result from opti-
mally reinserting a task, i.e. placing a task optimally in the schedule in terms of the 
current (variable) fitness function. If the task is not yet scheduled, this means allocat-
ing the resources and time to it that yield the best improvement in fitness. If the task 
is already scheduled, this may mean moving the task in time, allocating new re-
sources or a combination of the two (Figure 3). At each iteration of the local search, 
the entire neighbourhood is sampled and the best solution accepted. When the local 
search of the VNS reaches a local optimum, the search is kicked into a new area of 
the search space. We define these kicks as removing between 1 and 4 tasks and all 
dependent tasks. We remove dependent tasks so that precedence constraints are not 
broken. 

 

Fig. 3. Task reinsertion. The task is moved to the resource and time in the schedule which 
provides the best change in fitness according to the variable fitness function. The light grey 
boxes represent other tasks, the dark grey is the task being optimized and the dotted boxed are 
the positions being considered. 

The construction method, CON, uses the local search operator of the VNS and ter-
minates when a local optimum is found. The improvement metaheuristic, IMP, has a 
stopping criterion of 10,000 iterations. Table 2 lists the methods we will try. We can 
see the first two are normal heuristics and the last three are enhanced using VFF. 

Table 2. Various methods to be used and their VFF enhance versions 

Heuristics Description 
CON Construction heuristic using the global fitness function. 
CON + IMP Construction heuristic and improvement heuristic using the 

global fitness function. 
VFF(CON) Construction heuristic using a variable fitness function. 
VFF(CON + IMP) Construction heuristic and improvement heuristic using a 

variable fitness function. 
CON + VFF(IMP) Construction heuristic using the global fitness function and 

improvement heuristic using a variable fitness function. 

Resource 1 

Resource 1 

Resource n 

.

. 

. 
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5   Computational Experiments 

The five methods are used ten times on each of the five training instances and averages 
taken to reduce the effect of randomness. These five training instances are chosen to 
contain variations that a workforce would see on a day to day basis. By using multiple 
problem instances to evolve variable fitness functions we are trying to ensure that 
variable fitness functions learn characteristics of the problem through learning specific 
problem instances. For the methods enhanced with the variable fitness function, a test 
set of five problems instances will be solved using VFFs which were evolved using the 
training instances. Good performance on the test data will imply that a lot of CPU time 
could be used to train a “general purpose” variable fitness function, then that variable 
fitness function could be used very quickly in “real time”. 

The methods requiring the evolution of a variable fitness function will be given 50 
generations with a population size of 10 (equivalent to 500 evaluations). Methods 
without a variable fitness function will also be given 500 evaluations and the best one 
taken to give them the same amount of CPU time. The CON heuristic takes approxi-
mately 30 seconds to construct the five schedules and the IMP heuristic takes ap-
proximately 25 minutes on a 3.0 GHz PC. As these experiments will take over 260 
CPU days to complete they will be run in parallel on approximately 95 computers. 

Table 3 shows the results of the individual methods and their standard deviations 
and Figure 4 graphs these with 90% confidence intervals. From the results we can see 
that the variable fitness functions were indeed able to enhance the standard methods 
significantly in all cases. We see very large variations in fitness when the variable 
fitness function is used on the constructive part of the search (VFF(CON) and 
VFF(CON + IMP)). Further investigation leads us to believe that this is because when 
the variable fitness function affects the constructive part of the search, it has the pos-
sibility to move a great distance in the search space from the “normal” constructive 
algorithm. The best variable fitness function enhancement for the CON + IMP 
method was to just enhance the improvement part. The variation of CON + IMP is 
extremely low and the solutions that it has found are far from optimal. This may be 
because the kick method of the VNS we have chosen was not sufficiently disruptive. 

Table 3. Average fitness and standard deviation of ten runs of each method assessed using the 
global fitness function. 

Method Average Fitness Standard Deviation 
CON 3189.6774 N/A 
VFF(CON) 3308.0253 150.3236 
CON + IMP 3617.4517 8.4949 
VFF(CON + IMP) 3689.9001 111.2555 
CON + VFF(IMP) 3770.2434 35.4282 

Figure 5 shows the breakdown of the individual objectives and Table 4 shows the 
difference in the average objective measures the enhanced methods have produced. 
This chart and table show that the VFF approach has found a way to obtain improve-
ments to high priority objectives at the expense of low priority ones.  
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Fig. 4. Graph of the results in Table 3 with 90% confidence intervals 

In all of the cases where the method is enhanced by the variable fitness function, 
the number of scheduled tasks, both low priority and high priority, has increased. This 
intuitively makes sense as these are the highest weighted objectives in the global 
fitness function. Travel time was decreased in both the cases where the variable fit-
ness function was used to enhance the metaheuristic. The increase in travel time and 
other penalty objectives for the CON approach is not surprising as CON has no way 
to optimize these objectives by reinserting. Travel time is not included in the global 
fitness function, however, it would appear that when task reinsertion is permitted, the 
VFFs have learnt that less time spent traveling means more time can be spent doing 
tasks. In all cases, overrun increased, indicating that tasks were not scheduled as close 
to their start time as possible. This may be because tasks were shifted later in time  
so other tasks could be completed before them, enabling preceding tasks to also be 
completed. 

Table 4. Average change in objectives as a result of variable fitness function enhancement 

Base Method  CON  CON + IMP 

Improvement Using  VFF(CON)  VFF(CON + IMP) CON + VFF(IMP) 

Scheduled High (max)  20.20  4.30 17.10 

Scheduled Low (max)  40.50  37.10 43.20 

Travel Distance (min)  13.79  -24.03 -67.69 

Travel Time (min)  14.91  -24.85 -64.34 

Overrun (min)  603.52  220.51 203.08 

Complete Chains (max)  -3.30  -1.20 1.20 

Figure 6 shows the evolution process in action. Not only do these graphs show that 
the evolution process is working, and that the populations are evolving, but it shows 
the difference between randomly generated variable fitness functions (those in the  
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Fig. 5. Individual objective break down for each method 
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Fig. 6. Average population fitness and best of the population’s fitness at each generation show-
ing the evolution for VFF (CON) and CON + VFF(IMP) methods 

initial population at generation 0) and evolved ones (those in the final population at 
generation 50). The plot showing the evolution of VFF(CON) method shows a greater 
increase in fitness from random variable fitness functions to evolved variable fitness 
functions than that of CON + VFF(IMP) (note the difference in “fitness” scale be-
tween the graphs). This is because the CON + IMP is a better method than CON, and 
hence there is less room for improvement. 

Figure 7 shows an example of how the variable fitness function is working. The 
top plot shows a typical evolved variable fitness function from the population and 
how the objective weights change over the iterations. Highlighted are the Travel Time 
and Overrun objective weights. Plotted below are the objective values obtained at 
each iteration from a single run using this variable fitness function. A quite obvious 
correlation can be seen between the weight of overrun and the average overrun  
observed. When the weight is positive, overrun increases and when the weight is 
negative it decreases. This variable fitness function has in fact learnt a type of right-
left shift heuristic [15], which is frequently used in schedule repair. 

 



 Improving Metaheuristic Performance by Evolving a Variable Fitness Function 179 

Variable Fitness Function Evolved for a CON + VFF(IMP)
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Fig. 7. A selected evolved VFF shown above and a plot below showing how two selected ob-
jective measures change over the course of a search 

Figure 8 shows the improvement gained in the global fitness function from using 
the variable fitness function enhanced methods over the standard methods, for both 
the training data and the test data. Note that for test data instances, the amount of CPU  
time for the VFF and standard approaches are the same. As seen in the chart, the vari-
able fitness functions enhanced methods are still significantly better than their stan-
dard versions on the test data (with the exception of the VFF(CON + IMP) method 
whose 90% confidence interval takes it below 0%). This is a good indication that  
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Fig. 8. Average method performance gained using variable fitness function on test data com-
pared to training data 

variable fitness functions trained for the VFF(CON) and CON + VFF(IMP) could be 
reused on different problem instances with good performance, and that they have 
“learned” generalisable information about the problem as well as specific information 
about the training instances. 

6   Conclusions 

In this paper we have demonstrated the application of an evolutionary variable fitness 
function to a constructive heuristic and a metaheuristic for a complex, real-world 
workforce scheduling problem. We have shown that statistically significant increases 
in heuristic and metaheuristic performance can be gained by using the variable fitness 
function. We have also seen that evolution plays a key role in getting these gains. To 
show the reusability of the evolved variable fitness functions they were used on an-
other set of problem instances and showed gains of nearly equal magnitude. This is a 
strong indicator that a variable fitness function could be evolved offline and then the 
evolved variable fitness function be used in a real time situation. Arguably, the vari-
able fitness function can be used for any optimization problem where multiple objec-
tives can be defined. In future work we will investigate further how and why the VFF 
approach works its potential as a general problem-solving approach. 
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Abstract. Nowadays, searching information in the web or in any kind
of document collection has become one of the most frequent activities.
However, user queries can be formulated in a way that hinder the re-
covery of the requested information. The objective of automatic query
transformation is to improve the quality of the recovered information.
This paper describes a new genetic algorithm used to change the set
of terms that compose a user query without user supervision, by com-
plementing an expansion process based on the use of a morphological
thesaurus. We apply a stemming process to obtain the stem of a word,
for which the thesaurus provides its different forms. The set of candi-
date query terms is constructed by expanding each term in the original
query with the terms morphologically related. The genetic algorithm is
in charge of selecting the terms of the final query from the candidate
term set. The selection process is based on the retrieval results obtained
when searching with different combination of candidate terms. We have
obtained encouraging results, improving the performance of a standard
set of tests.

1 Introduction

Providing answers automatically to client’s information needs has become a cru-
cial task nowadays. The spectacular growth of the World-Wide-Web has called
for new solutions to access the information needed. An area of particular interest
is the reformulation of the queries that users present to the browsers or digital
libraries to access the information they need. The information contained in the
huge amount of available documents is characterized by a small set of represen-
tative terms, called index terms. These terms can be composed of one or more
words. Index terms are usually obtained by means of statistical techniques [1],
such as the construction of an inverted index1 whose terms have associated a
list of pointers to the occurrences of the term in the text collection.
� Supported by projects TIN2007-68083-C02-01 and TIN2007-67581-C02-01.
1 Given a set of documents containing words, the inverted index “inverts” that, so that

it consists of a set of words each listing all the documents containing that word.

J. van Hemert and C. Cotta (Eds.): EvoCOP 2008, LNCS 4972, pp. 182–193, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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It very often happens that user queries are composed of terms which are
different of the index terms of the collection, despite they refer the same concept,
or they correspond to the same stem. Another reason that hinder the retrieval of
the requested information is that very often users employ too small sets of search
terms because they rely on implicit knowledge that the search engine lacks. An
additional problem for retrieval is word and language ambiguity.

All these reasons have made query reformulation an interesting area of re-
search. This operation amounts to changing the original query by adding, remov-
ing or replacing terms. In other cases, what is modified is the weights assigned to
the terms in the search, to indicate their relevance. Let us consider an example.
Suppose that a user, who is interested in learning about modifying the search
queries to improve the results of his searches, has posed the following query:

modify query technique

As these three terms are very general, the list of documents that a Web searcher,
such as Google or Yahoo, retrieves is extremely large (820,000 documents), and
the order in which these documents are presented to the user is inappropriate.
In fact, among the first ten documents presented to the user, there are only two
more or less related to the concept of query modification or query reformulation.

One can easily think of expanding the search term by adding to the original
query synonyms and related terms. In our example, the query could become:

modify query technique modification transform transformation method

Though the expansion reduces the amount of retrieved documents (now they are
about 490,000), there are still many documents among the first ones which have
nothing to do with query reformulation. Specifically, among the ten first retrieved
documents only four are somehow related to the intended topic. Furthermore, a
blind query expansion can worsen the result by lowering the precision. Searchers
usually present first those documents which contain every term in the query,
and this can lead to exclude many relevant documents. On the other hand, there
exist other possible transformations which can provide a much better query for
the user needs. Suppose that we have a method available that provides us with
terms which are truly related to the information the user is looking for, not just
to the terms of the query. In our example these terms could be:

query transformation
query modification
query expansion
information retrieval
web search

Now, an appropriate selection of terms among those of the original query and
the related ones can lead to much more precise results. In the example, let us
assume that the query is transformed to

“query expansion” “query transformation”
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Now the amount of retrieved documents is 212 and all of them are relevant to
the user needs.

Because of the extended use of information search in our society, query refor-
mulation has become a very active research area and different approaches have
been applied. Salton [16] and Robertson and Sparck Jones [15] use relevance
feedback to reformulate the query. Systems based on relevance feedback mod-
ify the original query taking into account the user relevance judgements on the
documents retrieved by this original query.

There is an underlying common background in many of the works done in
query reformulation, namely the appropriate selection of a subset of search terms
among a list of candidate terms. Because the number of possible subsets can be
very large, it makes sense to apply heuristic search techniques to the problem,
such as genetic algorithms (GAs).

GAs have been previously applied [4] to different aspects of information re-
trieval. Proposals devoted to the query expansion problem with GAs can be
classified into relevance feedback techniques and Inductive Query by Example
(IQBE) algorithms. In systems based on relevance feedback [21] the user gives
feedback on the relevance of documents retrieved by his original query. IQBE [2]
is a process in which the user does not provide a query, but document exam-
ples and the algorithms induce the key concepts in order to find other relevant
documents.

Several works apply GAs to assigning weights to the query terms [14, 22, 18,
9, 8], while others are devoted to selecting the query terms. Let us review some
proposals in the latter case, the one on which we focus our work. Chen et al. [2]
apply a GA as an IQBE technique, i.e. to select the query terms from a set
of relevant documents provided by the user. In this work, the authors propose
an individual representation that has also been used in later works: chromo-
somes are binary vectors of fixed size in which each position is associated with
one of the candidate terms. In [10], the authors propose a genetic programming
(GP) algorithm to learn boolean queries encoded as trees whose operators are
AND, OR and NOT. This work was later extended in [5] by incorporating mul-
tiobjective optimization techniques to the problem. Fernández-Villacañas and
Shackleton [11] compared two evolutionary IQBE techniques for boolean query
learning, one based on GP and the other on a classic binary GA, which obtained
the best results. Kraft et al. [12] propose the use of GP to learn fuzzy queries.
The queries are encoded as expression trees with boolean operators as inner
nodes, and query terms with weights as terminal nodes. Cordón et al. [3] extend
Kraft’s proposal by applying a hybrid simulated annealing-genetic programming
scheme, what allows them to use new operators to adjust the term weights.
Tamine et al. [19] use knowledge-based operators instead of the classical blind
operators, as well as niching techniques.

A common factor of the above mentioned works is that they relay on some
kind of information provided by the user. In some cases, the user has to provide
a set of documents that are used for the inductive learning of terms. In other
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cases, the user provides relevance judgements on the retrieved documents, that
are use to compute the fitness.

In this work we propose a new application of GAs to the selection of query
terms. The novelty is that our system does not require any user supervision:
new candidate terms for the query are provided by a morphological thesaurus.
Some of the new terms will allow to retrieve new relevant documents. However,
including the whole set of candidate terms in the query will, in general, degrade
the system performance because documents fetched by expanded terms can rel-
egate documents relevant for the original query terms. Accordingly, we apply a
GA to perform a selection of terms. The GA works with individuals which rep-
resent different combinations of candidate query terms or queries. The selection
process is based on the relevance, with respect to the original query, of the first
N (a parameter) documents retrieved when submitting the query to an auto-
matic searcher2. To compute the relevance of a retrieved document we use the
classical vector space model of information retrieval (IR) [6]. We have performed
experiments to investigate the limit of the performance that can be reached by
the GA, by assuming that we have available the relevance judgements provided
by the user. After studying the GA parameters for this case, we have obtained
an important improvement of the performance. Then, we have studied the GA
which is applied without user supervision.

The rest of the paper proceeds as follows: section 2 describes the general
scheme of the process to construct the set of candidate query terms; section 3
is devoted to describe the evolutionary algorithm used to select the terms of
the final query, including different fitness functions tested in the experiments;
section 4 presents and discusses the experimental results, and section 5 draws
the main conclusions of this work.

2 The Query Expansion System

A classical operation in information retrieval to improve the performance of the
systems is to use morphological variants. In most cases, morphological variants
of words have similar semantic interpretations and can be considered as equiv-
alent for the purpose of IR applications. For this reason, a number of so-called
stemming algorithms, or stemmers, have been developed. They reduce a word to
its stem or root form. One can view stemming as a form of global query expan-
sion: we expand a term in the query with all the terms in the dictionary sharing
the same stem. Our system is based on this idea of expanding the query with
morphological variants.

Figure 1 shows a scheme of the process followed to transform a query. First
of all, we obtain the stems which correspond to the original query terms. This is
done with the well known Porter stemmer [20,13]. Then, we use the morphological
thesaurus for Spanish available along with the Porter stemmer, which provides
the different forms (plural and grammatical declinations) corresponding to each
stem. All these terms are candidate for the final query. Finally, the GA is in
2 The system does not require the user supervision.
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Fig. 1. Scheme of the process to select candidate terms to expand the query and the
later selection of them by the Genetic Algorithm

charge of selecting, from the candidate term set, the final query terms, that are
submitted to the searcher.

3 The Genetic Algorithm

Chromosomes [7] of our GA are fix-length binary strings where each position
corresponds to a candidate query term. A position with value one indicates that
the corresponding term is present in the query. Individuals of the initial popula-
tion are randomly generated. Because of some preliminary experiments we have
performed have shown that, in most cases, the elimination of the original query
terms degrades the retrieval performance, we force to maintain them among the
selected terms of every individual. The set of candidate terms is composed of the
original query terms, along with related terms provided by the applied thesaurus.

The selection mechanism to choose individuals for the new population uses
roulette wheel. We apply one-point crossover operator. Our algorithm uses ran-
dom mutation which flips a bit randomly chosen. We also apply elitism.

3.1 Fitness Functions Tested

The fitness functions that we have proposed are different measures of the degree
of similarity between a document belonging to the document collection and the
submitted query. To compute this similarity, we apply the vector space model
of information retrieval [6, 1]. In this model, a document dj and a query q are
represented as n-dimensional vectors. To construct the vectors, we have to assign
weights to index terms in queries and in documents. The classic vector space
model computes the term weight as:

w = tf · log
D

d

where tf stands for term frequency, log D
d is the inverse document frequency, D

is the total number of documents in the document set and d is the number of
documents containing the term.
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Then, as proposed by Salton and McGill [17], the degree of similarity of the
document dj with respect to the query q is evaluated as the distance between
the vectors dj and q. This distance can be quantified by the cosine of the angle
between these two vectors. Based on this similarity measure, we have considered
three alternative fitness functions:

√
cos θ, cos θ, and cos2 θ. They differ on the

distance among the values assigned to different individuals, which can affect the
GA selection process.

4 Experimental Results

The system has been implemented in Java, using the JGAP library3, on a Pen-
tium 4 processor. We have used a set of tests provided by CLEF (Cross-Language
Evaluation Forum) for the Spanish language. The collection and tests used come
from EFE94. This document collection came from the international news agency
EFE, from all the news received during 1994 and consists of 215.738 documents
stored in files with SGML format.

In the first place, we have performed experiments to know the limit to the
improvement we can reach according to the data provided by the collection used
in the experiments, and in this way to have an idea of the quality of the fitness
function that have been tested later.
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Fig. 2. Fitness evolution for two queries of the test set. The GA parameters have been
a population size of 100 individuals, a crossover rate of 25% and a mutation rate of
1%.

To this purpose, we take the user relevance judgements as the best fitness
function that we can use. Since for the CLEF collection used in the experiments
we have the user relevance judgements, we have used them to guide the selec-
tion process. Specifically, we have used as fitness function the standard precision
measure ( |Ra|

|A| ) defined as the fraction of retrieved documents (the set A) which
are relevant (Ra). Table 1 shows the precision of the best individual obtained

3 http://jgap.sourceforge.net/
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by the GA. We have compared our system performance with the results of the
original user query (Baseline) and with the results obtained expanding with the
stems provided by the Porter stemming (Porter Stemming). The latter works
by substituting the original query terms by their stems and performs the search
in the document collection indexed by stems. We can observe that our system
achieved an important improvement of the performance, greater than the one
achieved with other stemming methods traditionally used in query expansion,
such as Porter. We consider the improvement achieved a ceiling for the improve-
ment of the unsupervised GA. Figure 2 shows the evolution of two queries of the
test set. We can observe that both of them reach convergence very quickly.

Table 1. Global precision results for the whole set of tested queries. Each individual
datum has been computed as the average over 5 different GA runs. Prec. stands for
precision (all documents), Prec10 stands for the precision of the results for the first ten
documents retrieved. Last column is the rate of precision (all documents) improvement.

Prec. Prec10 Improvement

Baseline 0.3567 0.4150 –
Porter Stem. 0.4072 0.45 +12.40%
Genetic Stem. 0.4682 0.54 +23.81%

4.1 Selecting the Fitness Function

Let us now investigate the proposed unsupervised GA. To select the fitness
function to be used in the remaining experiments, we have studied the fitness
evolution for different queries of our test set. Figure 3 compares the fitness evo-
lution for the query which reaches the greatest improvement (best query). The
most relevant point in this figure is the generation at which each function reaches
its optimum. The three functions converge to different numerical values that cor-
respond to the same precision value (.68). We can observe that the square-root
cosine function is the first one to converge to its optimum. Probably because
this function emphasizes the distance between the values assigned to different
individuals, thus improving the selection process of the GA. Accordingly, the
square-root cosine has been the fitness function used in the remaining experi-
ments.

4.2 Tuning the GA Parameters

The next step taken has consisted in tuning the parameters of the GA. Figure 4
shows the fitness evolution using different crossover rates for two queries, the
best one (Figure 4(a)), and the worst one (Figure 4(b)). Results show that, in
both cases, we can reach a quickly convergence with values around 25%.

Figure 5 presents the fitness evolution using different mutation rates for the
best (a) and the worst (b) queries. Values around 1% are enough to produce a
quick convergence.
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Fig. 3. Fitness functions comparison for the best query, the one for which the greatest
precision improvement is achieved. The GA parameters have been a population size of
100 individuals, a crossover rate of 25% and a mutation rate of 1%.
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Fig. 4. Studying the best crossover rate for the best query (a) and the worst one (b).
The GA parameters are a population size of 100 individuals and a mutation rate of
1%.

Figure 6 show the fitness evolution for the best (a) and the worst (b) queries,
with different population sizes. The plots indicate that small population sizes,
such as one of 100 individuals, are enough to reach convergence very quickly.

4.3 Overall Performance

Table 2 presents precision and recall results obtained for the whole set of 40 test
queries that we have considered. Recall (Recall = |Ra|

|R| ), is a coverage measure
defined as the fraction of the relevant documents (the set R) which has been
retrieved (Ra). We have compared our system performance with the results
obtained with the original user query (Baseline) and with the results obtained
using the Porter stemming (Porter Stemming). Each individual datum has been
computed as the average over 5 different GA runs. We can observe that our
system is able to obtain an improvement in precision of 15.20% over the baseline,
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Fig. 5. Studying the best mutation rate for the best query (a) and the worst one (b).
The GA parameters are a population size of 100 individuals and a crossover rate of
25%.
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Fig. 6. Studying the population size for the best query (a) and the worst one (b). The
GA parameters are a crossover rate of 25% and a mutation rate of 1%.

being this improvement larger that the one obtained by other methods, such as
Porter stemming. Furthermore, our system also achieves a great improvement
in the system recall. Table 2 also shows the recall results. Thus, our system is
able to improve the coverage, improving precision at the same time. With the
current implementation the mean execution time per query is 45 seconds.

4.4 Analyzing a Final Query

Apart from evaluating the numerical performance of our system, we have an-
alyzed the queries resulting from the applied expansion process. Let us first
consider the query 63 of the collection, the one with best performance (precision
increases from .55 to .68, 19.11% of improvement). Table 3 shows the results for
this query.
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Table 2. Global precision and recall results for the whole set of tested queries. Prec.
stands for precision (all documents), Prec5 stands for the precision of the results for
the first five documents retrieved, and Prec10, stands for precision for the first ten
documents retrieved. Last column is the rate of precision (all documents) improvement.

Prec. Prec5 Prec10 Improvement Recall Improvement

Baseline 0.3567 0.4750 0.4150 – 0.7035 –
Porter Stem. 0.4072 0.50 0.45 +12.40% 0.7228 +2.67%
Genetic Stem. 0.4206 0.5150 0.4575 +15.20% 0.7521 +6.46%

Table 3. Retrieval results of a query example

User query: reserva de ballenas
Set of candidate terms:
reserva, reservaba, reservaban, reservaciones, reservación, reservada, reservadamente,
reservadas, reservado, reservados, reservamos, reservan, reservando, reservandose,
reservar, reservara, reservaran, reservarlas, reservarle, reservarles, reservarlo, reser-
varlos, reservarnos, reservaron, reservarse, reservará, reservarán, reservaŕıa, reser-
vaŕıan, reservas, reservase, reserve, reserven, reservista, reservistas, reservo, reser-
voir, reservándole, reservándolos, reservándose, reservó, ballenas, ballena, ballén,
balléna
GA final query: ballenas ballena reserva

The original query is a compound term in Spanish, whose meaning is whale
reserve. The first observation is the large size of the set of candidate terms,
what makes clear the need for a selection. In the final query we can observe that
the most representative terms related to the topic, such as ballena and ballenas
(singular and plural Spanish words for whale), and the word reserva (reserve)
have been added to the query. This query suggests investigating the application
of a special treatment of compound terms, using “reserva de ballenas” as a single
search term. This is a matter of future work.

Another query is enerǵıa renovable (Renewable Energy), for which the final
query is enerǵıas renovables enerǵıa renovable. It achieves an improvement of
39.21%.

In other cases, such as for the query Verduras, frutas y cáncer (vegetables,
fruits and cancer), the final query and the original query are the same. In this
case, the whole point of the query is the relationship between the query terms.
Because of this, searching independently for alternative forms of the query terms
can only worsen the precision. However, the GA is capable of clearing the ex-
panded query, recovering the original query and thus maintaining the system
performance.

5 Conclusions

In this paper we have shown how an evolutionary algorithm can help to refor-
mulate a user query to improve the results of the corresponding search. Our
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method does not require any user supervision. Specifically, we have obtained the
candidate terms to reformulate the query from a morphological thesaurus, with
provides, after applying stemming, the different forms (plural and grammatical
declinations) that a word can adopt. The evolutionary algorithm is in charge of
selecting the appropriate combination of terms for the new query. To do this,
the algorithm uses as fitness function a measure of the proximity between the
query terms selected in the considered individual and the top ranked documents
retrieved with these terms.

We have carried out some experiments to have an idea of the possible improve-
ment that the GA can achieve. In these experiments we have used the precision
obtained from the user relevance judgements as fitness function. Results have
shown that in this case the GA can reach a very high improvement.

We have investigated different proximity measures as fitness functions without
user supervision, such as cosine, square cosine, and square-root cosine. Exper-
iments have shown that the best results are obtained with square-root cosine.
However, results obtained with this function do not reach the reference results
obtained using the user relevance judgements. This suggests investigating other
similarity measures as fitness functions.

A study of the queries resulting after the reformulation has shown that in
many cases the GA is able to add terms which improve the system performance,
and in some cases in which the query expansion spoils the results, the GA is
able to recover the original query.

We are now working on reducing the execution time per query following two
lines. On the one hand we are improving the GA implementation, and on the
other hand we are investigating alternative fitness functions which do not require
to retrieve documents at each evaluation.
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Abstract. This paper presents Inc*, a general algorithm that can be used in con-
junction with any local search heuristic and that has the potential to substantially
improve the overall performance of the heuristic. Genetic programming is used to
discover new strategies for the Inc* algorithm. We experimentally compare per-
formance of local heuristics for SAT with and without the Inc* algorithm. Results
show that Inc* consistently improves performance.

1 Introduction

Many NP-Complete problems, like scheduling, time tabling, satisfiability, graph colour-
ing, etc., are routinely solved through the use of heuristics. A heuristic is effectively a
rule of thumb or an educated guess that reduces the search required to find a solu-
tion. Heuristics make it possible to solve NP-Complete problems in practical situations
which are beyond complete/exhaustive solvers. However, they provide no guarantee of
success. So, finding ways to improve the performance of heuristics could have impor-
tant and far-reaching ramifications.

We present Inc*, a general algorithm that can be used in conjunction with any lo-
cal search heuristic to substantially improve the overall performance of the heuristic.
Genetic programming is used to discover new strategies for the Inc* algorithm. We
demonstrate the approach with Boolean satisfiability problems (SAT).

The paper is organised as follows. In Section 2 we introduce SAT problems and
describe some of the best-known local-search heuristics used to solve them. We also
review recent evolutionary systems developed for learning and evolving SAT heuristics.
In Section 3, we introduce the Inc* algorithm along with the GP system used to evolve
strategies for Inc*. A description of the experiments we performed with the GP Inc*
framework is given in Section 4, Finally, we draw some conclusions in Section 5.

2 SAT Problem

SAT is a classical combinatorial optimisation problem. It was the first problem to be
proved to be NP-Complete [3]. Many heuristics have been proposed and successfully
used for solving the SAT problem (e.g., [8,18,20,19]). SAT has many different practical
applications. Also, many other problems can be transformed into SAT problems.
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The target in SAT is to determine whether it is possible to set the variables of a given
Boolean expression in such a way to make the expression true. The expression is said
to be satisfiable if such an assignment exists. If the expression is satisfiable, we often
want to know the assignment that satisfies it. The expression is typically represented in
Conjunctive Normal Form (CNF), i.e., as a conjunction of clauses, where each clause
is a disjunction of variables or negated variables.

There are many algorithms for solving SAT. Incomplete algorithms attempt to guess
an assignment that satisfies a formula. So, if they fail, one cannot know whether that’s
because the formula is unsatisfiable or simply because the algorithm did not run for long
enough. Complete algorithms, instead, effectively prove whether a formula is satisfiable
or not. So, their response is conclusive. They are in most cases based on backtracking.
That is, they select a variable, assign a value to it, simplify the formula based on this
value, then recursively check if the simplified formula is satisfiable. If this is the case,
the original formula is satisfiable and the problem is solved. Otherwise, the same recur-
sive check is done using the opposite truth value for the variable originally selected.

The best complete SAT solvers are instantiations of the Davis Putnam Logemann
Loveland procedure [4]. Incomplete algorithms are often based on local search heuris-
tics (Section 2.1). These algorithms can be extremely fast, but success cannot be guar-
anteed. On the contrary, complete algorithms guarantee success, but their computational
load can be considerable, and, so, they can be unacceptably slow on large SAT instances.

2.1 Stochastic Local-Search Heuristics for SAT

Stochastic local-search heuristics have been widely used since the early 90s for solving
the SAT problem following the successes of GSAT [20]. The main idea behind these
heuristics is to try to get an educated guess as to which variable will most likely, when
flipped, give us a solution or will move us one step closer to a solution. Normally the
heuristic starts by randomly initialising all the variables in a CNF formula. It then flips
one variable at a time until either a solution is reached or the maximum number of flips
allowed has been exceeded. Algorithm 1 shows the general structure of a typical local-
search heuristic for the SAT problem. The algorithm is normally repeatedly restarted
for a certain number of times if it is not successful.

Some of the best-known heuristics of this type include:

GSAT [20] which, at each iteration, flips the variable with the highest gain score,
where the gain of a variable is the difference between the total number of satisfied
clauses after flipping the variable and the current number of satisfied clauses. The
gain is negative if flipping the variable reduces the total number of satisfied clauses.

HSAT [8] In GSAT more than one variable may present the maximum gain. GSAT
chooses among such variables randomly. HSAT, instead, it selects the variable with
the maximum age, where the age of a variable is the number of flips since it is was
last flipped. So, the most recently flipped variable has an age of zero.

WalkSat [19] starts by selecting one of the unsatisfied clauses C. Then it flips ran-
domly one of the variables that will not break any of the currently satisfied clauses
(leading to a “zero-damage” flip). If none of the variables in C has a “zero-damage”
characteristic, it selects with probability p the variable with the maximum score
gain, and with probability (1 − p) a random variable in C.
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Algorithm 1. General algorithm for SAT stochastic local search heuristics
1: L = initialise the list of variables randomly
2: for i = 0 to MaxFlips do
3: if L satisfies formula F then
4: return L
5: end if
6: select variable V from L using some selection heuristic
7: flip V
8: end for
9: return n o assignment satisfying F found

As one case see, SAT heuristics use one of two main strategies for choosing the next
variable to flip. The first strategy is to make a greedy move. In other words, the SAT
solver chooses to flip the variable which transforms the current solution state to a state
which is closest to a solution. The gain of the variable is typically the most important
factor is selecting such a move, although also the age of the variable is sometimes used
to avoid looping. The second strategy is to perform a random walk. Mainly this is done
to avoid (or escape from) local optima. This is done by selecting a random variable to
flip from a designated set variables. There are different ways of choosing this set. For
example, the set can include all the variables in the CNF formula, as in the GSAT, or
just the variables in unsatisfied clauses, as in WalkSat.

2.2 Incremental SAT

In a standard SAT algorithm the input is a problem instance and the target is to state
whether this instance could be satisfied or not, and what are the variable assignment
that satisfies it. In some cases it is also important to know if the instance could be still
satisfied if further (arbitrary) Boolean clauses were added to the current set. This is
known in the literature as incremental or dynamic SAT [16]. In incremental SAT the
solver normally starts with a certain number of clauses and determines whether this set
can be satisfied or not. In case it is satisfied, the solver gives the user the opportunity of
adding more clauses to the existing set. The solver then checks whether the solution is
still valid. If not, it attempts to repair it.

Most incremental SAT solvers are based on exact algorithms as in [10], although
some researchers have also used incomplete or heuristic-based solvers to deal with in-
cremental SAT problems [11]. The main problem with the latter is that heuristics give
no grantee that a solution can be found. Their main advantage is speed.

In this paper we will introduce an approach that presents some similarity with in-
cremental SAT, but where the objective is to solve SAT problems, not incremental SAT
problems. In particular, we will use Genetic Programming (GP) [13,14] to investigate
the benefits of dynamically changing the number of active clauses during the course of
solving SAT problems. So, the solver is given a CNF formula including all the clauses
from the beginning, but we give the solver the ability to decide which clauses to start
with and in which order to tackle them. We will explain this in more detail later.
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2.3 Evolutionary Algorithms and SAT Problem

There have been a number of proposals of using evolutionary algorithms for SAT. An
example is FlipGA which was introduced by Marchiori and Rossi in [15], a genetic
algorithm was used to generate offspring solutions to SAT using standard genetic oper-
ators. However, offspring were then improved by means of local search methods. The
same authors later proposed ASAP, a variant of FlipGA [17]. A good overview of other
algorithms of this type is provided in [9].

GP has evolved competitive SAT solvers. For example, Fukunaga evolved local
search heuristics [6,7]. Also, GP has been used to enhance the performance of exact
algorithms for SAT by helping the algorithm decide which variables to start the back-
tracking process with or to evolve heuristics for initialising dynamic decisions [12].
Furthermore, a general framework for evolving local-search 3-SAT heuristics, called
GP-HH, has recently been proposed [1,2]. The aim there is to obtain “disposable”
heuristics which are evolved and used for a specific subset of instances of a problem.
Results were promising with GP-HH evolving very competitive heuristics.

3 The Inc* Framework

3.1 Principles Behind Inc*

As mentioned above, Inc* is a general algorithm that can be used in conjunction with
any local search heuristic to improve its performance. The general idea of the algorithm
is the following: rather than attempting to directly solve a difficult problem, let us first
derive a sequence of progressively simpler and simpler instances of the problem; then
let us give the solver these instances one by one starting from the simplest, and progress-
ing in the sequence only after all previous simplified instances are solved. The search
is not restarted when a new instance is presented to the solver. In this way, it is hoped
that the solver will effectively and progressively be biased towards areas of the search
space where there is a higher chance of finding a solution to the original problem.

While this is the fundamental idea, the Inc* framework goes one step further and
makes the choice of the simplified problems dynamic. The objective of this is to limit
the chances of the algorithm getting stuck in local optima. Whenever the system detects
that one of the simplified instances in the chain leading to the original problem is too
difficult, it backtracks and creates a new simplified instance (of the same size as the
previous one, but radically different from it) in the attempt to continue the progression
towards the goal problem instance.

The Inc* framework is particularly applicable to the SAT problem, where one can
easily and dynamically create the necessary set of simplified problems. Effectively the
algorithm starts by selecting a subset of the clauses in the formula. It then use one of
the SAT heuristics to tests the satisfiability of this portion of the formula, which we will
call the clauses active list. Depending on the result of the heuristic on this portion of the
formula, the algorithm then increases or decreases the number of clauses in the active
list. In some cases adding a clause has no effect on the satisfiability of the active list
with the current variable assignment, so no additional flips are necessary. In other cases,
more work is needed to find a new valid assignment.
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To illustrate the benefits of the main ideas behind Inc*, in Figure 1 we show the
results of two simple experiments using GSAT. In both experiments, we added clauses
to the active list one by one and we used GSAT after each addition to find an assignment
that satisfies the clauses currently active. The graph on the left of the figure shows the
case of a formula with 20 variables and 91 clauses. The graph reports the number of flips
GSAT used to find a new satisfying assignment after the addition of each new clause
and the number of variables in use in the active list. The plot on the right of the figure
shows the number of flips required by GSAT to find assignments that satisfy the active
list for a SAT instance with 50 variable and 218 clauses. The plots show that adding a
new clause to the currently active clauses requires no flips or a very small number of
flips most of the time. We even find that in both instances the full formula is actually
satisfied by an assignment found before all clauses had been added.1 This is really the
reason why the use of a progression of problems may make a problem easier. On rare
occasions, however, finding a new assignment after the addition of a clause may require
hundreds or even thousands of flips. It is precisely to avoid these high peaks that Inc*
backtracks.2

We have turned these ideas into a detailed algorithm (Algorithm 2). The algorithm
starts by initialising all the variables in the formula F randomly and by activating an
initial set of clauses by adding them to active clause list AC. The algorithm then runs one
of the SAT local search heuristics. The heuristic is given relatively a small number of
flips to run with at the beginning. The number of allowed flips is incremented gradually
if the SAT solver fails to satisfy the AC, until, of course, the total number of flips used
exceeds a predefined maximum (MaxFlips). A weight is assigned to each clause, which
indicates how many flips have been necessary to satisfy the active list after the addition
of this clause. So, after each run of the SAT heuristic, clause weights are updated. If the
heuristic found a variable assignment L that satisfies the current AC, then the size of AC
is increased by adding new classes to it. Otherwise, the algorithm removes from AC a
small set of clauses, giving preference to those with the lowest clause weight, and the
number of allowed flips is increased, as previously mentioned.

Two key elements in the effectiveness of Inc* are the decisions taken at Steps 2
and 2 in Algorithm 2 as to how many clauses to add or remove from the active list
after a success or failure, respectively. In this paper, we have used GP to find optimal
strategies to make these decisions. In the next section we describe the GP system used
and the evolved strategies.

1 This is not entirely surprising, since it is well-known that in most hard SAT instances there are
(sometimes numerous) redundant clauses. A redundant clause is a clause that has no effect on
the SAT formula [21]. There are algorithms for finding and removing redundant clauses [5],
but the process is complex and very time consuming, especially in large SAT instances.

2 Recently, some researchers have attempted to detect possible hidden structural information
inside real-world SAT instances (e.g., backbones, backdoors, equivalences and functional de-
pendencies) in an effort to improve the efficiency of SAT solvers on hard instances. Inc* does
not explicitly attempt to detect the hidden SAT structure. However, it effectively finds assign-
ments for the variables that minimise the chance of violating the backbone of a SAT problem as
early as possible in the construction of a solution. Furthermore, it does this quickly and without
ever requiring complex operations, simply acting as a wrapper for standard SAT heuristics.
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Fig. 1. Behaviour of Inc* with GSAT on two SAT problems (see text) when adding clauses one
by one (and no backtracking)

3.2 Inc* Optimisation Via GP

In this section we will describe the GP system used to evolve strategies for the Inc*
algorithm. As we mentioned above, an evolved strategy (which takes the form of a
computer program) needs to decide how many clauses the algorithm should add/remove
to/from the active list after each success or failure at finding a valid variable assignment
that satisfies the current active clauses of the full SAT formula.

We use a tree representation for programs. The function and terminal sets are shown
Table 1. We constrain the representation requiring that the root node of each individual
in the population be the binary function i f Success(d1,d2), where d1 and d2 assumed to
be reals. This function returns the integer part of its first argument, �d1�, if the last run
of the SAT heuristic was successful at satisfying the current AC. If this is the case the
value �d1� is taken to represent how many clauses should be added to AC.3 If, instead,
the SAT heuristic failed to satisfy AC, then i f Success returns the value �d2�, which is
taken to represent how many clauses should be removed from AC.

The other elements of the primitive set behave as follows: the function add(d1,d2)
returns the sum of d1 and d2, sub(d1,d2) subtracts d2 from d1, mul(d1,d2) returns the
product of d1 by d2, div(d1,d2) safely divides d1 by d2, and neg(d1) inverts the sign of
d1. The terminals vNo and cNo return the total number of variables and the total number
of clauses in the full SAT formula, respectively. The terminals used cNo and used vNo,
instead, return the number of unique variables and the number of clauses currently
loaded in the active list, respectively. Finally, constX represent random integers between
0 and 9.

To evolve general Inc* strategies, we used a training set including many SAT prob-
lems with different numbers of variables. The problems were taken from the widely
used SATLIB benchmark library. All problems were randomly generated satisfiable in-
stances of 3-SAT. In total we used 50 instances: 10 with 100 variables, 15 with 150

3 Note that, to give complete freedom to evolution, negative return values are allowed. If �d1� is
negative clauses are removed, rather than added, from AC.
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Algorithm 2. Inc* approach to solving SAT problems
1: L = random variable assignment
2: AC = small set of random clauses from the original problem
3: Flips = number of allowed flips at each stage
4: Flips Total = 0 {This keeps track of the overall number of flips used}
5: Flips Used = 0 {This keeps track of the flips used to test the active list}
6: Inc Flip Rate = rate of increment in the number of flips after each fail
7: repeat
8: for i = 0 to Flips do
9: if L satisfies formula F then

10: return L
11: end if
12: select variable V from AC using some selection heuristic
13: flip V in L
14: end for
15: Flips Total = Flips Total + Flips Used
16: update clause weights
17: if L satisfies AC then
18: if AC contains all clauses in F then
19: return L
20: end if
21: AC = add more clauses to the active list
22: else
23: sort AC
24: AC = remove some clauses from the active list
25: Flips = increment allowed flips
26: end if
27: until Flips Total < MaxFlips
28: return n o assignment satisfying F found

variables and 25 with 250 variables. The fitness f (s) of an evolved strategy s was mea-
sured by running the Inc* algorithm under the control of s on all the 50 fitness cases.
More precisely

f (s) = ∑
i

(
incs(i)∗ v(i)

10

)
+

1
f lips(s)

where v(i) is the number of variables in fitness case i, incs(i) is a flag representing
whether or not running the Inc* algorithm with strategy s on fitness case i led to success
(i.e., incs(i) = 1 if fitness case i is satisfied and 0 otherwise), and f lips(s) is the number
of flips used by strategy s averaged over all fitness cases. The factor v(i)/10 is used to
emphasise the importance of fitness cases with a larger number of variables, while the
term 1/ f lips(s) is added to give a slight advantage to strategies which use fewer flips
(this is very small and typically plays a role only to break symmetries in the presence of
individuals that solve the same fitness cases, but with different degrees of efficiency).

There is only one exception to this fitness calculation. In the system we keep a count
of the number of attempts the SAT solver made at solving the AC list. If a maximum
number of tries is reached, fitness is computed differently. Imagine, for example, what
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Table 1. GP function and terminal sets

Function Set
i f Success(d1,d2) : returns d1 if the last attempt to solve the CNF formula was successful
add(d1,d2) : returns the sum of d1 and d2 as doubles
sub(d1,d2) : subtracts d2 from d1
mul(d1,d2) : returns the multiplication of d1 by d2
div(d1,d2) : safe division of d1 by d2
abs(d1) : returns the absolute value of d1
neg(d1) : multiplies d1 by −1
sqrt(d1) : returns the a safe square root of d1
Terminal Set
vNo : total number of variables in the CNF SAT formula
cNo : total number of clauses in the CNF SAT formula
used cNo : number the currently active variables
used vNo : number the currently active clauses
constX : constant integer number form 0 to 9

would happen if an evolved strategy added zero clauses after each successful attempt
and removed zero clauses after each unsuccessful one. After a small number of flips
have been expended to satisfy the initial active clauses, since no clauses are added or
removed, no further flips would ever be necessary. So, the total number of flips used
would never reach the maximum number of flips allowed, leading to an infinite loop.
By using a maximum number of tries, we can avoid this and we can signal to the system
that this individual (strategy) went into an infinite loop on the current fitness case. The
system reacts by setting the fitness of this strategy to zero and stopping the evaluation
of any remaining fitness cases.

The GP system initialises the population by randomly drawing nodes from the func-
tion and terminal sets. This is done uniformly at random using the GROW method, except
that the selection of the function i f Success is forced for the root node and is not allowed
elsewhere. After initialisation, the population is manipulated by the following operators:

– Roulette wheel selection (proportionate selection) is used. Reselection is permitted.
– The reproduction rate is 0.1. Individuals that have not been affected by any genetic

operator are not evaluated again to reduce the computation cost.
– The crossover rate is 0.8. Offspring are created by extracting a random subtree from

the first parent and inserting it at a random point (excluding the root of the tree) in
a copy of the second parent.

– Mutation is applied with a rate of 0.1. This is done by selecting a random node
from the parent (including the root of the tree), deleting the sub-tree rooted there,
and then regenerating it randomly as in the initialisation phase.

4 Experimental Results

In our experiments we used a population of 1000 individuals, run for 51 generations.
While strategies are evolved using 50 fitness cases, the generality of best of run indi-
viduals is then evaluated on an independent test set including more 500 SAT instances.
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Table 2. Comparison between average performance of GSAT and GSAT with Inc* SR=success
rate, AT = average tries, AF=average number of flips (out of a maximum of 100,000)

GSAT GSAT+Inc*
Instance Test Set variables clauses SR AF SR AF AT
uf20-(901-1000) 20 91 0.632 43853 1 1336.52 3.37
uf50-(901-1000) 50 218 0.368 75623 0.935 14949.3 12.29
uf75-(51-100) 75 325 0.348 78423.1 0.780 31614.6 18.47
uf100-(901-1000) 100 430 0.297 86599 0.723 39856 22.59

This section will show a comparison between the performance of standard handcrafted
heuristics (GSAT and WalkSat) and the same heuristics when combined with Inc* con-
trolled by strategies evolved by GP. We have used the following parameters values for
the Inc* algorithm.4 We allow 100 flips to start with. Upon failure, the number of flips
is incremented by 20%. We allow a maximum total number of flips of 100,000. The
maximum number of tries is 1000 (including successful and unsuccessful attempts).

The GP system has managed to evolve a number of successful strategies. Most of
these can be categorised into three groups. In the first group, strategies start by activat-
ing a relatively small number of clauses w.r.t. the total, after which they then rapidly in-
crease the number of active clauses. This was almost always the best performing group.
In the second group, strategies start by activating a very large number clauses at the be-
ginning, then they remove some clauses after each fail and try to go forward again until a
solution for all clauses is found. Strategies in this category perform slightly worse than
those in the first category. Strategies in the third group were generally outperformed
by those in the other groups. Strategies in this group acted in an unexpected manner.
Namely, these strategies kept moving forward by adding clauses after both successful
and unsuccessful tries. In the testing phase this kind of strategies performed well on
instances with fewer than 100 variables in terms of number of flips used to solve the in-
stance. However, they had a lower success rate than other strategies on larger instances.
The reason of this will be explained after showing detailed results of the strategies. The
following is some evolved heuristics after they have been normalizef representing the
diffrent groups:

– First group: i f Success(abs(vno),neg(sroot(used vNo)))
– First group: i f Success(mul(used vno,div(used cno,2)),neg(div(used vno,9)))
– Second group: i f Success(cno,neg(sub(cno,div(used cno,3))))
– Third group: i f Success(mul(vno,2),abs(add(vno,sroot(used cno))))

Table 2 shows a first set of experimental results. In particular, it shows the differ-
ence between the average performance of the GSAT and the average performance of
GSAT combined with the best evolved Inc* strategies, which we will call IncGSAT.
Both heuristics in this experiment are allowed a maximum of 100,000 total flips. The
performance of the heuristics on an instance is the average of 10 different runs, to ensure

4 Many different combinations of parameter values have been tested, but this particular combi-
nation gave almost invariably the best results.
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Table 3. Comparison between average performance of WalkSat and WalkSat with Inc*
SR=success rate, AT = average tries, AF=average number of flips (out of a maximum of 100,000)

WalkSat WalkSat+Inc*
Instance Test Set variables clauses SR AF SR AF AT
uf20-(901-1000) 20 91 1 104.43 1 116.239 1.18
uf50-(901-1000) 50 218 1 673.17 1 696.174 4.95
uf75-(51-100) 75 325 1 1896.74 1 2000.59 8.07
uf100-(901-1000) 100 430 1 3747.32 1 3825.82 11.51
uf150-(51-100) 150 645 0.974 15021.3 0.987 14275 16.45
uf200-(51-100) 200 860 0.9 26639.2 0.936 28526.2 21.39
uf225-(51-100) 225 960 0.87 29868.5 0.91 31258.8 22.17
uf250-(51-100) 250 1065 0.816 38972.4 0.875 38304.2 24.09

the results are statistically meaningful. The AF column shows the average number of
flips used by each heuristic in successful attempts only. As one case see IncGSAT has a
better performance than GSAT in terms of success rate (as also shown in Figure 2) and
average number of flips used to solve the test instances. So, IncGSAT managed to solve
many more instance in less time. We believe this is due to the lack of random moves
in the GSAT, which makes GSAT easy pray of local optima. IncGSAT improves GSAT
by going forward and backward adding and removing clauses through the course of a
run thereby avoiding the problem. The AT column shows the number of tries IncGSAT
used. This corresponds to the number of times IncGSAT modified the search space to
escape local optima and find a better path for satisfying the instance.
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Table 3 shows the results of another set of experiment using WalkSat and a combina-
tion of Sat* and WalkSat which we will call IncWalkSat. Also in this experiment, both
heuristics were given a maximum of 100,000 total flips. Again, the performance of the
heuristics on an instance is the average of 10 different runs. WalkSat is among the best
performing local search heuristics for SAT.

We categorize the results in this table to two groups. The first group includes in-
stances with no more than 100 variables. The second group includes instances with
more than 100 variables. In the first group of problems both heuristics have a perfect
success rate of 100%. However, WalkSat used a slightly smaller number of flips, thereby
running marginally faster than IncWalkSat on this group of problems. In the second
group, which contains larger instances, however, IncWalkSat has a higher success rate
than WalkSat, and the difference in the performance increases as the size of the in-
stance increases. This means that Inc* can solve complex instances where local heuris-
tics alone fail. This explains why when training the GP system on small instances some
evolved strategies (the strategies in group three) always tried to go foreword by adding
more clauses after both successful and unsuccessful tries as we mentioned above. Ef-
fectively, these strategies tried to imitate the standard heuristics behaviour, and, indeed,
they were slightly faster on small instances.

5 Conclusion

In this paper we provided a proof of concept, supported by results, of the ideas be-
hind our Inc* algorithm, which tries to solve problems incrementally. Results on the
SAT problem showed that combining local search heuristics with Inc* improved their
performance especially on instance which standard local search alone failed to solve.

In future work, we will try to generalise the algorithm to other problem domains,
including scheduling, time tabling, TSP, etc. Also we will test the algorithm on diffident
types of SAT benchmarks (e.g., structured and handcrafted SAT problems). Also we
would like to embed Inc* within a hyperheuristic framework where multiple agents
perform the search in parallel. Each agent might, for example, use a different heuristic
and would search for solutions to a part of the original problem (e.g., a subset of the
clauses in a SAT formula).
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Abstract. The bi-objective ring star problem aims to locate a cycle
through a subset of nodes of a graph while optimizing two types of cost.
The first criterion is to minimize a ring cost, related to the length of the
cycle, whereas the second one is to minimize an assignment cost, from
non-visited nodes to visited ones. In spite of its natural multi-objective
formulation, this problem has never been investigated in such a way. In
this paper, three metaheuristics are designed to approximate the whole
set of efficient solutions for the problem under consideration. Compu-
tational experiments are performed on well-known benchmark test in-
stances, and the proposed methods are rigorously compared to each other
using different performance metrics.

1 Introduction

The purpose of the bi-objective ring star problem is to find a cycle (the ring)
which visits a subset of nodes of a graph. The two objectives are the minimization
of a cost associated to the ring itself and the minimization of a cost associated to
the arcs directed from non-visited nodes to visited ones. Although this problem
is clearly bi-objective, it has always been investigated in a single-objective way.
It was introduced by Labbé et al. [12], where the goal was to minimize the sum
of both costs. Another mono-criterion formulation of the problem, where one of
the objectives is regarded as a constraint, has been investigated, for instance, by
Renaud et al. [16]. These two formulations are commonly used to convert a multi-
objective problem into a single-objective one by using scalar approaches [14].

The ring star problem has a wide range of industrial applications, including
telecommunication networks design, school bus routing, routing of essential med-
ical care services, circular-shaped transportation, and post-box location. How-
ever, in spite of its real-world applications, this is the first time that such a
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problem is studied in a bi-objective way, perhaps because of its complexity. In-
deed, it is particularly challenging because, once it is decided which nodes have
to be visited or not, a classical travelling salesman problem still remains to be
solved. Nevertheless, Current and Schilling [5] investigated two variants of a sim-
ilar problem: the median tour problem and the maximal covering tour problem.
In both, one criterion is the minimization of the total length of the tour, while
another one is the maximization of the access to the tour for non-visited nodes.
To tackle these problems, the authors used a kind of lexicographic method, where
one objective function is optimized after another. Furthermore, Dorner et al. [8]
recently formulated a problem of tour planning for mobile healthcare facilities in
Senegal. A mobile facility has to visit a subset of nodes. Non-visited nodes are
then assigned to their closest tour stop or are regarded as unable to reach a tour
stop. The obectives are the minimization of the ratio between medical working
time and total working time, the minimization of the average distance to the
nearest tour stops, and the maximization of a coverage criterion. The authors
designed a Pareto ant colony optimization algorithm and two multi-objective
genetic algorithms to solve real-world instances.

In this paper, we investigate metaheuristic solution methods for the problem
under consideration. Three metaheuristics are designed to approximate the whole
set of efficient solutions. A population-based local search and two evolutionary
algorithms are compared on state-of-the-art instances involving up to 300 nodes.
The reminder of the paper is organized as follows. In Section 2, we provide the
basic definitions for multi-objective optimization and the formulation of the bi-
objective ring star problem. Section 3 presents three resolution methods designed
to tackle the problem under consideration. Some experimental results and a
comparative study are provided in Section 4, while the last section concludes
the paper and discusses perspectives about this work.

2 Preliminaries

This section presents some basic concepts related to multi-objective optimization
and provides the formulation of the bi-objective ring star problem.

2.1 Multi-objective Optimization

A Multi-objective Optimization Problem (MOP) aims to optimize a set of n ≥ 2
objective functions f1, f2, . . . , fn simultaneously. Without loss of generality, we
assume that all n objective functions have to be minimized. Let X denote the
set of feasible solutions in the decision space, and Z the set of feasible points
in the objective space. To each decision vector x ∈ X is assigned exactly one
objective vector z ∈ Z on the basis of a vector function f : X → Z with z =
f(x) = (f1(x), f2(x), . . . , fn(x)). In the case of a Multi-objective Combinatorial
Optimization Problem (MCOP), note that a decision vector x ∈ X has a finite
set of possible values.
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Definition 1. An objective vector z ∈ Z weakly dominates another objective
vector z′ ∈ Z if and only if ∀i ∈ [1..n], zi ≤ z′i.

Definition 2. An objective vector z ∈ Z dominates another objective vector
z′ ∈ Z if and only if ∀i ∈ [1..n], zi ≤ z′i and ∃j ∈ [1..n] such as zj < z′j.

Definition 3. An objective vector z ∈ Z is non-dominated if and only if there
does not exist another objective vector z′ ∈ Z such that z′ dominates z.

A solution x ∈ X is said to be efficient (or Pareto optimal) if its mapping in the
objective space results in a non-dominated point. The set of all efficient solutions
is the efficient (or Pareto optimal) set, denoted by XE . The set of all non-
dominated vectors is the non-dominated front (or the trade-off surface), denoted
by ZN . A common approach in solving MOPs is to find or to approximate the
set of efficient solutions; or at least a solution x ∈ XE for each non-dominated
vector z ∈ ZN such as f(x) = z. A reasonable basic introduction to multi-
objective optimization can be found in [6].

Note that we will assume, throughout the paper, that objective values are nor-
malized. To achieve this, the minimum and the maximum value of each objective
function are used in order to adaptively replace each objective function by its
corresponding normalized function, so that its values lie in the interval [0, 1].

2.2 The Bi-objective Ring Star Problem

The Ring Star Problem (RSP) can be described as follows. Let G = (V, E, A)
be a complete mixed graph where V = {v1, v2, . . . , vn} is a set of vertices, E =
{[vi, vj ]|vi, vj ∈ V, i < j} is a set of edges, and A = {(vi, vj)|vi, vj ∈ V } is a set of
arcs. Vertex v1 is the depot. To each edge [vi, vj ] we assign a non-negative ring
cost cij , and to each arc (vi, vj) we assign a non-negative assignment cost dij .
The RSP consists of locating a simple cycle through a subset of nodes V ′ ⊂ V
(with v1 ∈ V ′) while (i) minimizing the sum of the ring costs related to all edges
that belong to the cycle, and (ii) minimizing the sum of the assignment costs of
arcs directed from every non-visited node to a visited one so that the associated
cost is minimum. An example of solution is given in Figure 1, where solid lines
represent edges that belong to the ring and dashed lines represent arcs of the
assignments. The first objective is called the ring cost and is defined as:

∑
[vi,vj ]∈E

cijxij , (1)

where xij is a binary variable equal to 1 if and only if the edge [vi, vj ] belongs
to the cycle. The second objective, the assignment cost, can be computed as
follows: ∑

vi∈V \V ′

min
vj∈V ′

dij . (2)

The RSP is an NP-hard combinatorial problem since the particular case of vis-
iting the whole set of nodes is equivalent to a traditional travelling salesman
problem.
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Fig. 1. An example of a solution for the ring star problem

3 Metaheuristics for the Bi-objective Ring Star Problem

Three metaheuristics are proposed to tackle the bi-objective RSP: a variable
neighbourhood iterative Local Search (LS) and two Evolutionary Algorithms
(EAs). These algorithms are respectively steady-state variations of IBMOLS [1],
IBEA [17] and NSGA-II [7]. IBMOLS and IBEA are both recent indicator-based
metaheuristics, whereas NSGA-II is one of the most often used Pareto-based
resolution methods. In this section, RSP-specific components are described after
we have presented the main characteristics of the LS and of the EAs.

3.1 A Multi-objective Local Search

Since they are easily adaptable to the multi-objective context, many of the search
algorithms proposed to tackle MOPs are EAs. However, LS algorithms are known
to be effective metaheuristics for solving real-world applications [4,9]. Several
multi-objective LS approaches have been proposed in the literature. In particu-
lar, the Indicator-Based Multi-Objective Local Search (IBMOLS for short) has
recently been presented in [1]. IBMOLS is a generic population-based multi-
objective LS dealing with a fixed population size. This allows to obtain a set of
efficient solutions in a single run without specifying any mechanism to control the
number of solutions during the search process. Moreover, IBMOLS represents
an alternative to aggregation- and Pareto-based multi-objective metaheuristics.
Indeed, as proposed in [17], it is assumed that the optimization goal is given in
terms of a binary quality indicator I [19] which can be regarded as an extension
of the Pareto dominance relation. A value I(A, B) quantifies the difference in
quality between two non-dominated sets A and B. So, if ZN denotes the optimal
non-dominated front, the overall optimization goal can be formulated as:

arg minA∈Ω I(A, ZN ) , (3)

where Ω denotes the space of all non-dominated set approximations. As noted
in [17], ZN does not have to be known, it is just required in the formalization of
the optimization goal. Since ZN is fixed, I actually represents a unary function
that assigns a real number reflecting the quality of each approximation set.
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One of the main advantages of indicator-based optimization is that no specific
diversity preservation mechanism is generally required, according to the indicator
being used.

The IBMOLS algorithm maintains a population P . Then, it generates the
neighbourhood of a solution contained in P until a good solution is found (i.e.
one that is better than at least one solution of P in terms of the indicator being
used). By iterating this simple principle to every solution of P , we obtain a
local search step. The whole local search stops when the archive of potentially
efficient solutions has not received any new item during a complete local search
step. Moreover, as local search methods are usually performed in an iterative
way, a population re-initialization scheme has to be designed after each local
search. Several strategies can be used within an iterative IBMOLS [1]. Solutions
can be re-initialized randomly, and crossover or random noise can be applied
to solutions of the efficient set approximation. The interested reader could refer
to [1] for more details about IBMOLS.

A benefical feature of this LS is the low number of parameters that are re-
quired. In addition to the population size, the binary quality indicator to be
used and the population re-initialization strategy (between each local search)
are the two only other problem-independent parameters. Indeed, several quality
indicators can be used within IBMOLS. The binary additive ε-indicator [17] is
particularly well-adapted to indicator-based search and seems to be efficient on
different kinds of problems (see, for instance, [1,17]). It is capable of obtain-
ing both a well-converged and a well-diversified Pareto set approximation. This
indicator computes the minimum value by which a solution x1 ∈ X can be trans-
lated in the objective space to weakly dominate another solution x2 ∈ X . For a
minimization problem, it is defined as follows:

Iε+(x1, x2) = max
i∈{1,...,n}

(fi(x1) − fi(x2)) . (4)

Furthermore, to evaluate the quality of a solution according to a whole popula-
tion P and a binary quality indicator I, different approaches exist. As proposed
in [17], we will here consider an additive technique that amplifies the influence
of solutions mapping to dominating points over solutions mapping to dominated
ones which can be outlined as follows:

I(P \ {x}, x) =
∑

x�∈P\{x}
−e−I(x�,x)/κ , (5)

where κ > 0 is a scaling factor. However, the initial experiments were not sat-
isfactory because the algorithm was not able to find the extreme points of the
trade-off surface. This is known to be one of the drawbacks of the ε-indicator, ap-
parently due to the high convexity of the front. To tackle this problem, we add
a condition preventing the deletion of solutions corresponding to the extreme
non-dominated vectors during the replacement step of IBMOLS. Additionally,
the population re-initialization scheme used between each local search is based
on random noise, such as in the basic simulated annealing algorithm [4]. Ran-
dom noise consists of multiple mutations applied to N different randomly chosen
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solutions contained in the archive of potentially efficient solutions. If the size of
the archive is less than N , the population is filled with random solutions.

3.2 Multi-objective Evolutionary Algorithms

The multi-objective EAs designed for the RSP are variations of two state-of-
the-art methods, namely IBEA [17] and NSGA-II [7]. Some minor modifications
have been carried out to improve the algorithms for the particular case of the
addressed problem, for which the set of non-dominated points is, in general, very
large.

IBEA. Introduced by Zitzler and Künzli [17], the Indicator-Based Evolution-
ary Algorithm (IBEA) is, like IBMOLS, an indicator-based metaheuristic. The
fitness assignment scheme of this EA is based on a pairwise comparison of solu-
tions contained in a population by using a binary quality indicator. As within
IBMOLS, no diversity preservation technique is required, according to the indi-
cator being used. The selection scheme for reproduction is a binary tournament
between randomly chosen individuals. The replacement strategy is an environ-
mental one that consists of deleting, one-by-one, the worst individuals, and in
updating the fitness values of the remaining solutions each time there is a dele-
tion; this is continued until the required population size is reached. Moreover,
an archive stores solutions mapping to potentially non-dominated points, in or-
der to prevent their loss during the stochastic search process. However, in our
case, and in contrast to the IBEA defined in [17], this archive is updated at
each generation since the beginning of the EA, so that the output size is not
necessarily less than or equal to the population size. Just like for the IBMOLS
algorithm, the indicator used within IBEA is the additive ε-indicator; and the
same mechanism has been used to prevent the loss of the extreme points on the
trade-off surface.

NSGA-II. At each generation of NSGA-II (Non-dominated Sorting Genetic Al-
gorithm II [7]), the solutions contained in the population are ranked into several
classes. Individuals mapping to vectors from the first front all belong to the best
efficient set; individuals mapping to vectors from the second front all belong to
the second best efficient set; and so on. Two values are then computed for every
solution of the population. The first one corresponds to the rank the correspond-
ing solution belongs to, and represents the quality of the solution in terms of
convergence. The second one, the crowding distance, consists of estimating the
density of solutions surrounding a particular point of the objective space, and
represents the quality of the solution in terms of diversity. A solution is said to
be better than another if it has the best rank, or in the case of a tie, if it has the
best crowding distance. The selection strategy is a deterministic tournament be-
tween two random solutions. At the replacement step, only the best individuals
survive, with respect to the population size. Likewise, an external population is
added to the steady-state NSGA-II in order to store every potentially efficient
solution found during the search.
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Vertex v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

Random key 0 0.7 - 0.3 - 0.8 0.2 - 0.5 -

Fig. 2. A RSP solution represented by random keys

3.3 Application to the Bi-objective Ring Star Problem

This section provides the problem-specific steps of the metaheuristics introduced
earlier. Components designed for the particular case of the bi-objective RSP,
such as the encoding mechanism, the population initialization as well as the
neighbourhood, mutation and crossover operators, are described below.

Solution Encoding. The encoding mechanism used to represent a RSP solu-
tion, for both the LS and the EAs, is based on the random keys concept proposed
by Bean [2]. This implementation has already been successfully applied for a
single-objective version of the RSP in [16]. To each node vi belonging to the ring
we assign exactly one random key xi ∈ [0, 1[, where x1 = 0. A special value is
assigned to unvisited nodes. Thus, the ring route associated to a solution cor-
responds to the nodes ordered according to their random keys in an increasing
way; i.e. if xi < xj , then vj comes after vi. As an example, a possible represen-
tation for the cycle (v1,v7,v4,v9,v2,v6) is given in Figure 2. Vertices v3,v5,v8 and
v10 are assigned to a visited node in such a way that the associated assignment
cost is minimum.

Population Initialization. For every optimization method, the initial popu-
lation has been generated randomly. Each node has a probability p = 0.5 that
it will be visited or not, and to each visited vertex we associate a key randomly
generated between 0 and 1.

Neighbourhood and Mutation Operators. As the RSP is both a rout-
ing problem and an assignment problem, different neighbourhood and mutation
operators have to be designed. Here, we consider the following:

– insert operator : adds an unvisited node vi in the cycle, the position where
to insert vi is chosen in order to minimize the ring cost

– remove operator : removes a vertex vj of the ring
– 2-opt operator : applies a 2-opt operator between two nodes of the cycle vi

and vj , i.e. it reverses the sequence of visited nodes between vi and vj .

For the LS, the neighbours of a solution are randomly explored, without consid-
ering any order between these three operators; and each neighbour is at most
visited once. Moreover, note that it is not necessary to completely re-evaluate
a solution each time a neighbourhood operator is applied. Thus, after an in-
sert neighbourhood operator, we just have to re-assign unvisited nodes in order
to minimize the assignment cost. After a remove neighbourhood operator, we
just have to re-assign the nodes that were previously assigned to the one that
has been removed. And, after a 2-opt neighbourhood operator, we just have to
recompute the ring cost, the assignment cost being unchanged. In the case of
mutations, the operators are applied to randomly chosen vertices.
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Crossover Operator. The crossover operator is a quadratic crossover closely
related to the one proposed in [16]. Two randomly selected solutions s1 and
s2 are divided in a particular position. Then, the first part of s1 is combined
with the second part of s2 to build a first offspring, and the first part of s2 is
combined with the second part of s1 to build a second offspring. Every node
retains its random key so that it enables an easy reconstruction of the new
individuals. Thanks to the random keys encoding mechanism, solutions having
a different ring size can easily be recombined, even if the initial ring structures
are generally broken in the offspring solutions.

4 Experiments

The metaheuristics described in the previous section have all been implemented
using the ParadisEO-MOEO library1 [13]. ParadisEO-MOEO is a C++ white-
box object-oriented framework dedicated to the reusable design of metaheuristics
for multi-objective optimization. All the algorithms share the same base compo-
nents for a fair comparison between them. Computational runs were performed
on an Intel Core 2 Duo 6600 (2 × 2.40 GHz) machine, with 2 GB RAM.

4.1 Experimental Protocol

Benchmarks. The performance of the metaheuristics has been tested on dif-
ferent instances taken from the TSPLIB2 [15]. These instances involve between
50 and 300 nodes. The number at the end of an instance’s name represents the
number of nodes for the instance under consideration. Let lij denote the distance
between two nodes vi and vj of a TSPLIB file. Then, the ring cost cij and the
assignment cost dij have both been set to lij for every pair of nodes vi and vj .

Parameter Setting. For each one of the metaheuristics proposed to tackle
the bi-objective RSP, the search process stops after a certain ammount of run
time. As shown in Table 1, this run time is defined according to the size of
the instance under consideration. Likewise, the population size depends on the
number of vertices involved in the instance (see Table 1). For each instance,
a small (S), a medium (M), a large (L) and an extra-large (XL) population
size have been tested. The noise rate for the population re-initialization in the
iterated version of IBMOLS is set to a fixed percentage of the instance’s size. We
investigate three different values for this noise rate: 5%, 10% and 20%. Then,
0.05 × n, 0.1 × n and 0.2 × n random mutations are applied respectively for a
problem with n nodes. For both IBMOLS and IBEA, the scaling factor κ is set
to 0.05. Finally, for the EAs, the crossover probability is set to 0.25, and the
mutation probability to 1.00, with a probability of 0.25, 0.25 and 0.50 for the
remove, the insert and the 2-opt operator, respectively.

Performance Assessment. For each TSPLIB instance and each metaheuris-
tic proposed in Section 3, a set of 20 runs, with different initial populations,
1 ParadisEO is available at http://paradiseo.gforge.inria.fr.
2 Benchmarks are available at http://elib.zib.de/pub/mp-testdata/tsp/tsplib.

http://paradiseo.gforge.inria.fr
http://elib.zib.de/pub/mp-testdata/tsp/tsplib
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Table 1. Instance-dependant parameters setting

Instance Population size Running
S M L XL time

eil51 5 10 15 100 20”
st70 5 10 15 100 1’
kroA100 10 15 20 100 2’
bier127 10 15 20 100 5’
kroA150 15 20 30 100 10’
kroA200 15 20 30 100 20’
pr264 15 20 30 100 50’
pr299 15 20 30 100 100’

has been performed. In order to evaluate the quality of the non-dominated front
approximations obtained for a specific test instance, we follow the protocol given
in [11]. First, we compute a reference set Z�

N of non-dominated points extracted
from the union of all these fronts. Second, we define zmax = (zmax

1 , zmax
2 ), where

zmax
1 (respectively zmax

2 ) denotes the upper bound of the first (respectively sec-
ond) objective in the whole non-dominated front approximations. Then, to mea-
sure the quality of an output set A in comparison to Z�

N , we compute the dif-
ference between these two sets by using the unary hypervolume metric [18],
(1.05 × zmax

1 , 1.05 × zmax
2 ) being the reference point. The hypervolume differ-

ence indicator (I−H) computes the portion of the objective space that is weakly
dominated by Z�

N and not by A. Furthermore, we also consider the R2 indica-
tor proposed in [10] with a Chebycheff utility function defined by z� = (1, 1),
ρ = 0.01 and a set Λ of 500 uniformly distributed normalized weighted vectors.
As a consequence, for each test instance, we obtain 20 hypervolume differences
and 20 R2 measures, corresponding to the 20 runs, per algorithm. As suggested
by Knowles et al. [11], once all these values are computed, we perform a statis-
tical analysis on pairs of optimization methods for a comparison on a specific
test instance. To this end, we use the Mann-Whitney statistical test as described
in [11], with a p-value lower than 5%. Note that all the performance assessment
procedures have been achieved using the performance assessment tool suite pro-
vided in PISA3 [3].

4.2 Computational Results and Discussion

Table 2 presents the results obtained by the metaheuristics on eight different test
instances. Due to space limitation and in order to simplify the reading of the
table, only the results obtained by a large population size and by a noise rate of
5% for IBMOLS and by an extra-large population size for NSGA-II and IBEA
are reported in the paper. These parameters have respectively been chosen as
they were globally more efficient for each one of the algorithms. Overall, with
respect to the metrics we used, we can see that IBMOLS performs significantly

3 The package is available at http://www.tik.ee.ethz.ch/pisa/assessment.html.

http://www.tik.ee.ethz.ch/pisa/assessment.html
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Table 2. Comparison of different metaheuristics for the I−
H and the R2 metrics by

using a Mann-Whitney statistical test with a p-value of 5%. According to the metric
under consideration, either the results of the algorithm located at a specific row are
significantly better than those of the algorithm located at a specific column (�), either
they are worse (≺), or there is no significant difference between both (≡).

I−
H R2

IBMOLS IBEA NSGA-II IBMOLS IBEA NSGA-II

eil51 IBMOLS - � � - � �
IBEA ≺ - � ≺ - �
NSGA-II ≺ ≺ - ≺ ≺ -

st70 IBMOLS - ≡ � - � �
IBEA ≡ - � ≺ - �
NSGA-II ≺ ≺ - ≺ ≺ -

kroA100 IBMOLS - ≡ � - ≡ �
IBEA ≡ - � ≡ - �
NSGA-II ≺ ≺ - ≺ ≺ -

bier127 IBMOLS - � � - � �
IBEA ≺ - � ≺ - �
NSGA-II ≺ ≺ - ≺ ≺ -

kroA150 IBMOLS - � � - � �
IBEA ≺ - � ≺ - �
NSGA-II ≺ ≺ - ≺ ≺ -

kroA200 IBMOLS - � � - � �
IBEA ≺ - ≡ ≺ - ≡
NSGA-II ≺ ≡ - ≺ ≡ -

pr264 IBMOLS - ≡ � - ≺ ≺
IBEA ≡ - � � - �
NSGA-II ≺ ≺ - � ≺ -

pr299 IBMOLS - ≡ � - ≺ ≺
IBEA ≡ - � � - �
NSGA-II ≺ ≺ - � ≺ -

better than IBEA and NSGA-II on most test instances. Nevertheless, it is not
the case on large problems (pr264 and pr299), where IBMOLS is outperformed
by both algorithms according to the R2 metric. Additionally, although IBEA is
in general statistically outperformed by IBMOLS, it performs significantly bet-
ter than NSGA-II on a large number of the tested instances, and never performs
significantly worse on each one of them. Furthermore, we can see that the over-
all efficiency of NSGA-II is very poor since it is statistically outperformed on
most problems, except occasionally where it performs better than the IBMOLS
algorithm, as pointed out above. To summarise, IBMOLS performs well on
small-size RSP instances, but seems to have more trouble in dealing with large
ones. Moreover, we also compared our results to the ones given in [12] for a
mono-objective version of the problem. For each test instance, the error ratio
between the point belonging to Z�

N that minimizes the single objective function
investigated in [12] and the exact optimal value is is always under 2% and is
averagely under 0.5%.
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One of the main characteristics of the problem under consideration seems
to be the high number of points located in the trade-off surface. Then, after a
certain number of iterations, a large part of the population involved in all the
algorithms might map to potentially non-dominated points. This could explain
the low efficiency of NSGA-II. Since the same rank is assigned to the major
part of the population, only the crowding distance is used to compare solutions.
However, the indicator-based fitness assignment scheme is obviously much more
suited to determine potentially efficient solutions than the single crowding dis-
tance. Moreover, the high performance of IBMOLS in comparison to IBEA might
depends on how close are the solutions which map to non-dominated points in
the decision space. If these solutions are close to each other according to the
neighbourhood operators, a LS is known to be particularly well-suited to find
additional interesting solutions by exploring the neighbourhood of a potentially
efficient solution. On the contrary, an EA usually explores the decision space in
a more random way. Thus, a landscape analysis could be interesting to study
the bi-objective RSP in more depth.

5 Conclusion

In this paper, a multi-objective routing problem, the bi-objective ring star prob-
lem, has been investigated. It has already been studied in a single-objective form
where either both objectives have been combined [12] or one objective has been
treated as a constraint [16]. Here, for the first time, this problem is formulated
in such a way that multiple conflicting criteria have to be optimized simulta-
neously. Three metaheuristics have been proposed to approximate the minimal
complete set of efficient solutions: a population-based local search with variable
neighbourhood and two evolutionary algorithms. Experiments were conducted
using various test instances. We concluded that the local search method was sig-
nificantly more efficient than the evolutionary algorithms on a large majority of
instances, with respect to the performance metrics we used. The only instances
for which the local search was outperformed were large ones. As a next step, we
will try to solve ring star problem instances involving an even bigger number of
nodes, to verify if our observations are still valid. If it is the case, it could be in-
teresting to design a cooperation scheme between two different methods (i.e. the
local search procedure and an evolutionary algorithm) in order to benefit from
the respective quality of each one of them. The resulting hybrid metaheuristic
could be particularly effective for solving large size problems.
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Abstract. Recently, a new iterative optimization framework utilizing
an evolutionary algorithm called ”Prototype Optimization with Evolved
iMprovement Steps” (POEMS) was introduced, which showed good per-
formance on hard optimization problems - large instances of TSP and
real-valued optimization problems. Especially, on discrete optimization
problems such as the TSP the algorithm exhibited much better search ca-
pabilities than the standard evolutionary approaches. In many real-world
optimization problems a solution is sought for multiple (conflicting) op-
timization criteria. This paper proposes a multiobjective version of the
POEMS algorithm (mPOEMS), which was experimentally evaluated on
the multiobjective 0/1 knapsack problem with alternative multiobjective
evolutionary algorithms. Major result of the experiments was that the
proposed algorithm performed comparable to or better than the alter-
native algorithms.

Keywords: multiobjective optimization, evolutionary algorithms, mul-
tiobjective 0/1 knapsack problem.

1 Introduction

In many real-world optimization problems a solution is sought that is optimal
with respect to multiple (often conflicting) optimization criteria. Multiple objec-
tives specify quality measures of solutions that typically do not result in a single
optimal solution. Instead there is a set of alternative solutions that are optimal
in a sense that (i) none of them is superior to the others and (ii) there is no
superior solution in the search space that to these optimal solutions considering
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all objectives. Thus, a good multi-objective optimization technique must be able
to search for a set of optimal solutions concurrently in a single run.

For this purpose, evolutionary algorithms seem to be well suited because they
evolve a population of diverse solutions in parallel. Many evolutionary-based
approaches for solving multiobjective optimization problems have been proposed
in the last 25 years.

The recently introduced POEMS optimization framework proved to be effi-
cient for solving hard optimization problems - the Traveling Salesman Problem
(TSP)[4], a binary string optimization problem [4], a real-valued parameter op-
timization problem [5], and a network flow optimization problem [6]. This paper
introduces an extension of the basic POEMS algorithm for solving multiobjective
optimizations.

For an experimental evaluation of the presented approach a multiobjective
0/1 knapsack problem was used, which is a well-known NP hard combinatorial
optimization problem, the particular formulation of the problem is given in Sec-
tion 5. Results achieved by our approach were analyzed and compared to several
evolutionary-based approaches presented in [9]. First results indicate that the
proposed multiobjective POEMS algorithm performs very well on the test prob-
lem. It also scales well as it outperforms the alternative algorithms even on the
largest instances of the problem.

This paper is structured as follows. First, a short overview of multiobjective
optimization techniques is given with a focus on evolutionary-based approaches.
Section 3 briefly describes the single-objective POEMS algorithm. In section
4, the multiobjective version mPOEMS is introduced. Section 5 describes the
test problem, test datasets, and the configuration of the multiobjective POEMS
algorithm used in the experiments. Results achieved with our approach are ana-
lyzed in section 6. Section 7 concludes and suggests directions for analyzing and
improving the proposed approach.

2 Multiobjective Optimization Techniques

There are many evolutionary approaches for solving multiobjective optimiza-
tion problems. The most distinguishing features are (i) the fitness assignment
strategy for evaluating the potential solutions, (ii) the evolutionary model with
a specific selection and replacement strategy, and (iii) how the diversity of the
evolved population is preserved. Note the last issue is extremely important as the
desired outcome of the algorithm is a set of optimal solutions that is as diverse
as possible. One of the early approaches is Schaffer’s Vector Evaluated Genetic
Algorithm (VEGA) [7] that does not make the use of a single fitness value when
selecting solutions to a mating pool. Instead, it carries out selection for each
objective separately. Then, crossover and mutation are used in a standard way.
Another approaches make the use of a weighted-sum aggregation of objectives in
order to assign a scalar fitness value to solutions, see [1]. However, such methods
are highly sensitive to the weight vector used in the scalarization process.



220 J. Kubalik, R. Mordinyi, and S. Biffl

Perhaps the most widespread and successful are multiobjective evolutionary
algorithms that use a concept of dominance for ranking of solutions. By definition
[1], a solution x dominates the other solution y, if the solution x is no worse
than y in all objectives and the solution x is strictly better than y in at least one
objective. Naturally, if solution x dominates solution y then x is considered better
than y in the context of multiobjective optimization. However, many times there
are two different solutions such that neither of them can be said to be better
than the other with respect to all objectives. When this happens between two
solutions, they are called non-dominated solutions.

The concept of dominance can be used to divide a finite set S of solutions
chosen from the search space into two non-overlapping sets, the non-dominated
set S1 and the dominated set S2. The set S1 contains all solutions that do
not dominate each other. The set S2, which is a complement of S1, contains
solutions that are dominated by at least one solution of S1. If the set S is the
whole feasible search space then the set S1 is a set of optimal solutions called
Pareto-optimal solutions and the curve formed by joining these solutions is called
a Pareto-optimal front. Note that in the absence of any higher-level information,
all Pareto-optimal solutions are equally important [1]. That is why the goal in
a multiobjective optimization is to find a set of solutions that is (i) as close as
possible to the Pareto-optimal front and (ii) as diverse as possible so that the
solutions are uniformly distributed along the whole Pareto-optimal front.

Of the Pareto-based approaches, perhaps the most well-known are Pareto
Archived Evolution Strategy (PAES) [3], Non-dominated Sorting GA (NSGA and
NSGA-II) and Strength Pareto Evolutionary Algorithm (SPEA and SPEA2). We
just briefly describe the NSGA-II [2] and SPEA2 [9] algorithms, because we chose
them for as alternative approaches for the empirical comparisonwith our approach.

SPEA2 uses a regular population and an archive (a set of constant size of
best solutions found so far). An archive truncation method guarantees that the
boundary solutions are preserved. Fitness assignment scheme takes for each in-
dividual into account how many individuals it dominates and it is dominated by
which is further refined by the incorporation of density information. In order to
maintain a good spread of solutions, NSGA-II uses a density estimation metric
called crowding distance. The crowding distance of a given solution is defined
as the largest cuboid enclosing the solution without including any other solu-
tion in the population. Then, so called crowding comparison operator guides the
selection process towards solutions of the best non-domination rank and with
crowding distance. In each generation, a population Qt of offspring solutions is
generated from the current population of solutions Pt. The two populations are
merged together resulting in the temporary population Rt of size 2 ·N , where N
is the population size. From this population a better half of solutions is chosen
in the following way to constitute a new population Pt+1. First, the population
Rt is sorted according to non-domination. Then the solutions are taken starting
from the best non-domination level and are put to the new population Pt+1. If
a set of solutions of currently processed non-domination level is bigger than the
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remaining empty space in the population Pt+1, then the best solutions in terms
of the crowding distance are used only.

3 Singleobjective POEMS

Standard evolutionary algorithms (EAs) typically evolve a population of can-
didate solutions to a given problem. Each of the candidate solutions encodes a
complete solution, e.g., a complete set of the problem parameters in parame-
ter optimizations, a complete schedule in the case of scheduling problems, or a
complete tour for the traveling salesman problem. This implies, especially for
large instances of the solved problem, that the EA operates with very big and
complex structures.

In POEMS [4], the evolutionary algorithm does not operate on a population of
complete solutions to the problem to be solved. Instead, one candidate solution,
called the prototype, is generated at the beginning and then it is iteratively im-
proved with the best-performing modification of the current prototype provided
by an EA, see Figure 1.

The prototype modifications are represented as a sequence of primitive ac-
tions/operations, defined specifically for the problem at hand. The evaluation of
action sequences is based on how well/badly they modify the current prototype,
which is passed as an input parameter to the EA. Moreover, sequences that
do not change the prototype at all are penalized in order to avoid generating
useless trivial solutions. After the EA finishes, it is checked whether the best
evolved sequence improves the current prototype or not. If an improvement is
achieved, then the sequence is applied to the current prototype and resulting
in the new prototype. Otherwise the current prototype remains unchanged for
the next iteration. The process of iterative prototype improvement stops when
the termination condition is fulfilled. A common termination condition is the
number of fitness evaluations performed in the run.

The following paragraphs briefly discuss POEMS implementation issues.

Representation of action sequences. The EA evolves linear chromosomes of
length MaxGenes, where each gene represents an instance of a certain action cho-

1 generate(Prototype)
2 repeat

3 BestSequence ← run EA(Prototype)
4 Candidate ← apply(BestSequence,Prototype)
5 if(Candidate is better than Prototype)
6 Prototype ← Candidate
7 until(POEMS termination condition)

8 return Prototype

Fig. 1. An outline of the single-objective POEMS algorithm
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sen from a set of elementary actions defined for the given problem. Each action is
represented by a record, with an attribute action type followed by parameters of
the action. Besides actions that truly modify the prototype, there is also a spe-
cial type of action called nop (no operation). Any action with action type = nop
is interpreted as a void action with no effect on the prototype, regardless of
the values of its parameters. A chromosome can contain one or more instances
of the nop operation. This way a variable effective length of chromosomes is
implemented.

Operators. The representation of action sequences allows to use a variety of
possible recombination and mutation operators such as standard 1-point, 2-point
or uniform crossover and a simple gene-modifying mutation. In [4] a generalized
uniform crossover was used, that forms a valid offspring as an arbitrary combi-
nation of parental genes. Both parents have the same probability of contributing
their genes to the child, and each gene can be used only once. The mutation
operator changes either the action type (activates or inactivates the action) or
the parameters of the action.

Evolutionary model. In general, the EA is expected to be executed many times
during the POEMS run. Thus, it must be designed and configured to converge
fast in order to get the output in short time. As the EA is evolving sequences
of actions to improve the solution prototype, not the complete solution, the
maximal length of chromosomes MaxGenes can be short compared to the size
of the problem. For example MaxGenes would be much smaller than the size
of the chromosome in case of binary string optimization or much smaller than
the number of cities in case of the TSP problem [4]. The relaxed requirement on
the expected EA output and the small size of evolved chromosomes enables to
setup the EA so that it converges within a few generations. Examples of typical
configurations can be found in [4], [5] and [6].

It is important to note, that the evolved improving alterations of the prototype
do not represent just local moves around the prototype. In fact, long phenotyp-
ical as well as genotypical distances between the prototype and its modification
can be observed if the algorithm possesses a sufficient explorative ability. The
space of possible modifications of the current prototype is determined by the
set of elementary actions and the maximum allowed length of evolved action se-
quences MaxGenes, see [4]. If the actions are less explorative and the sequences
are shorter, the system searches in a prototype neighborhood only and is more
prone to get stuck in a local optimum early. And vice versa, if larger alterations
of the prototype can be evolved using the primitive actions, the exploration capa-
bility the algorithm allows to converge to better and hopefully globally optimal
solutions.

4 Multiobjective POEMS

The multiobjective ”Prototype Optimization with Evolved iMprovement Steps”
(mPOEMS) belongs to a class of multiobjective optimization algorithms that
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1 generate(SolutionBase)
2 repeat

3 Prototype ← choose prototype(SolutionBase)
4 ActionSequences ← MOEA(Prototype, SolutionBase)
5 NewSolutions ← apply to(ActionSequences, Prototype)
6 SolutionBase ← merge(NewSolutions,SolutionBase)
7 until(termination condition is fulfilled)

8 return SolutionBase

Fig. 2. An outline of the mPOEMS algorithm

uses the concept of dominance. In this section we describe the way the set of
non-dominated solutions progressing towards the Pareto-optimal set is evolved
in mPOEMS. Note that in multiobjective optimization the goal is to find a set
of optimal solutions (as close as possible to the Pareto-optimal set) that are as
diverse in both the variable space and the objective space as possible. Thus, the
main differences between mPOEMS and POEMS are that

– mPOEMS maintains a set of best solutions found so far, called a solution
base, not just one prototype solution that is maintained in POEMS. In each
iteration of mPOEMS one solution from the set of non-dominated solutions
in the solution base is chosen as the prototype for which the action sequences
will be evolved by the EA.

– mPOEMS uses a kind of a multiobjective EA (MOEA) based on the dom-
inance concept, not just a simple EA. The output of the MOEA is a set
of action sequences (not just one action sequence) generating new solutions
that are merged with the current solution base resulting in a new version of
the solution base.

Figure 2 shows the main steps of the mPOEMS algorithm. It starts with
generating the initial solutions of the solution base. The size of the solution base
is denoted as SBSize and stays constant through the whole mPOEMS run.

The first step of the main body of the iterative process is the selection of
the prototype for the current iteration. The prototype is chosen among non-
dominated solutions of the solution base in a way that guarantees that all parts
of the non-dominated front of the evolved solution base are processed equally,
see paragraph ”prototype selection” below. The prototype is passed as an input
parameter to the multiobjective EA, where the action sequences possibly alter-
ing the prototype towards the Pareto-optimal set are evolved. The other input
parameter of MOEA is the current solution base that is used for evaluation pur-
poses, see below. MOEA returns the final population of action sequences, which
are then applied to the current prototype resulting in a set of new solutions.

Prototype selection. In each iteration a new prototype is chosen among non-
dominated solutions of the solution base. The selection scheme is designed so that
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all partitions of the non-domination set have as equal sampling rate as possible.
In the first iteration a set S of n candidate prototype solutions is chosen according
to the following procedure:

1. S = {}, i = 1, Choose a solution si by random
2. i + +, choose a solution si so that its normalized Euclidean distance to the

nearest solution in S is maximal,
S = S + si,

3. Repeat Step 2 until |S| = n.

The Euclidean distance between two solutions i and j is calculated with the
objective function values according to the following formula

dij =

√√√√
m∑

k=1

(
o
(i)
k − o

(j)
k

uk − lk
)2,

where o
(i)
k and o

(j)
k are k-th objective values of solutions i and j, uk and lk

are the upper and lower bounds for the k-th objective and m is the number of
objectives. Each time a new prototype is to be chosen it is selected from the
set S by random and removed from the set. Also if any solution in S becomes
dominated by any solution in S it is removed from S. If the set is empty a new
sample S of non-dominated solutions is selected according to the above described
procedure.

The outline of the multiobjective EA used in mPOEMS is shown in Figure 3.
First, it generates a starting population of action sequences of size PopSize.
The action sequences are evaluated based on the quality of the solution that
is produced by applying the given action sequences to the prototype. Then,
the population of action sequences is evolved within a loop until some stopping
condition is fulfilled. In the first step of the loop, a new population of action
sequences is generated using standard operations of selection, crossover and mu-
tation. The action sequences are evaluated and assigned fitness values. Finally,
the new population and the old one are merged and PopSize solutions of the
best non-dominated fronts of that joint population are used to constitute the
resulting population.

Fitness assignment schema. Since we are dealing with multiobjective op-
timization problems, each solution is assigned multiple objective values. The
evaluation procedure uses a concept of dominance between solutions in order
to find a single fitness value specifying the solution quality in terms of its non-
domination level. In order to have more levels of non-domination that better
distinguishes solutions the evaluated solutions are merged with solutions from
the solution base resulting in a temporary set of solutions S (the prototype
solution is included in the set S as well). The process of calculating the level
of non-dominance starts with finding the non-dominated solutions among the
whole set S. These solutions belong to the first level of non-domination front
and are assigned a non-domination level NDlevel = 1. Then they are temporar-
ily disregarded from the set S and the set of non-dominated solutions is sought
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input: Prototype, SolutionBase
output: Population of evolved action sequences

1 generate(OldPop)
2 evaluate(OldPop)
3 repeat

4 NewPop ← evolutionary cycle(OldPop)
5 evaluate(NewPop)
6 OldPop ← merge(OldPop, NewPop)
7 until(EA termination condition is fulfilled)

8 return OldPop

Fig. 3. An outline of the multiobjective evolutionary algorithm used in mPOEMS

among the remaining solutions. These are the solutions of the second level of
non-domination and are assigned a non-domination level NDlevel = 2. The pro-
cess goes on until there is no solution left in S, i.e. every solution has assigned its
NDlevel value. In the second phase of the evaluation procedure, the evaluated
solutions are assigned their fitness value. Solutions that belong to a better than
or the same level of non-domination as the prototype solution are assigned a fit-
ness value equal to their NDlevel value. Solutions with the NDlevel higher than
the prototype solution are assigned a fitness value equal to NDlevel + 0.5 ∗ PD,
where PD is 1 if the given solution is dominated by the prototype, and 0 other-
wise. Note that the smaller fitness the better solution. So, the selection pressure
is towards the solutions that

1. belong to a better non-domination front than the prototype, if possible, and
2. are not dominated by the prototype solution.

Evolutionary model. New solutions produced by action sequences evolved by
the MOEA are merged with the current solution base resulting in a tempo-
rary population of size PopSize + SBSize. From this population a new solu-
tion base of size SBSize is selected according to the schema used in NSGA-
II. First, the joint set is sorted based on the non-domination. Then the non-
dominated fronts are added to the new solution base one by one, starting from
the best non-dominated front. The non-dominated front that can not fit the
whole into the remaining space in the new solution base is ranked according
to the crowding distance value introduced in [2], and only the best solutions
are added to the new solution base. This strategy together with the prototype
selection scheme ensures that (i) the boundary solutions of the non-dominated
front of the solution base will not get lost and (ii) the most unique solutions will
retain in the solution base and (iii) the non-dominated front will be sampled
uniformly.
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5 Test Data and Experimental Setup

Test problem. For experimental evaluation we chose a well-known NP-hard
Multiobjective 0/1 Knapsack Problem. We used the same formulation of the
problem as was used in the comparative study by Zitzler and Thiele [8] and we
compared results achieved by mPOEMS with alternative approaches presented
there. As stated in [8], the multiobjective 0/1 knapsack problem is a good test
problem, because its description is simple, yet the problem itself is difficult to
solve and the problem is important in practice.

The multiobjective 0/1 knapsack problem considered in [8] is defined in the
following way: Given a set of m items and a set of n knapsacks, with pi,j

being profit of item j according to knapsack i, wi,j being weight of item j
according to knapsack i, and ci being capacity of knapsack i, find a vector
x = (x1, x2, . . . , xm) ∈ {0, 1}m, such that

∀i ∈ {1, 2, . . . , n} :
m∑

j=1

wi,j · xj ≤ ci

and for which f(x) = (f1(x), f2(x), . . . , fn(x)) is maximum, where

fi(x) =
m∑

j=1

pi,j · xj

and xj = 1 iff item j is selected.
Since the solution of the problem is encoded as a binary string of length m,

many codings do not represent a feasible solution (i.e. the capacity constraint
of one or more knapsacks is violated). Thus, a greedy heuristic repair algorithm,
which was also used in [8], was applied to every illegal solution. It removes items
from the solution until all capacity constraints are fulfilled. Items with the least
profit/weight ratio are removed first.

Compared algorithms. Out of the algorithms tested in [9] we chose the fol-
lowing two – SPEA2 and NSGA-II. We used the largest datasets with 750 items
that were used in [9]. Both the datasets and the data of results presented in [9]
are available on the web [10]. Thirty independent runs were carried out with
mPOEMS on each test problem resulting in a similar set of values as in [9].

Performance measures and indicators. For all datasets the algorithms were
compared on the basis of the following performance measures

– Coverage of two sets C(X, Y ), proposed in [8]. The measure is defined in
the following way: Given the two sets of non-dominated solutions found by
the compared algorithms, the measure C(X, Y ) returns a ratio of a number
of solutions of Y that are dominated by or equal to any solution of X to
the whole set Y . Thus, it returns values from the interval [0, 1]. The value
C(X, Y ) = 1 means that all solutions in Y are covered by solutions of the
set X . And vice versa, the value C(X, Y ) = 0 means that none of the solu-
tions in Y are covered by the set X . For the problems with 2 knapsacks we
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also present plots showing the tradeoff fronts constituted of non-dominated
solutions of a union set of ten sets of non-dominated solutions obtained by
each algorithm on the given dataset. The plots also show the Pareto-optimal
front for the respective dataset if available.

– Size of the space covered S(X), proposed in [8] and modified in [9]. A ref-
erence volume between the origin and an utopian objective vector (defined
by the profit sums of all items in each objective) is taken into account. This
measure is defined as a fraction of that volume that is not dominated by the
final non-dominated solutions. So, the smaller the value of this measure the
better the spread of solutions is, and vice versa.

Configuration of mPOEMS. In [9], the total number of solutions sampled
(and evaluated) through the whole EA was 480.000 for 2 knapsacks, 576.000
for 3 knapsacks and 672 for 4 knapsacks. We used the same number of solution
evaluations NEvaluations for each dataset. Parameters of mPOEMS were constant
for all datasets as follows

– PopulationSize = 70. Size of the population of evolved action sequences.
– SolutionBaseSize = 100. The size of the solution base.
– MaxGenes = 50. The length of the evolved action sequences. Note, that it

is much smaller than the solution size m (which is 750 in this study).
– NIterations was 274, 330, and 384 for 2, 3, 4 knapsacks. The number of

iterations in mPOEMS algorithm, see repeat-until cycle in Fig. 2.
– NGenerations=25. The number of generations carried out in the MOEA.
– PCross = 0.8, PMutate = 0.2. Probability of crossover and mutation.
– Tournament = 3. Parameter of the tournament selection used in MOEA.
– n = 20. A size of the set S of candidates for the prototype.
– Both the solution base as well as the starting population of action sequences

in each iteration were initialized by random.

6 Results

Table 1 provides a comparison of mPOEMS and the other approaches on the
basis of the coverage of two sets performance measure C(X, Y ). Each cell of the
table is interpreted so that it indicates a proportion of non-dominated solutions
obtained by the approach given in the corresponding column covered by the set
of non-dominated solutions obtained by the approach given in the correspond-
ing row. For example, for n = 4 we see that non-dominated solutions found by
mPOEMS dominate 96.1% of non-dominated solutions found by NSGA-II and
97.1% of non-dominated solutions found by SPEA2, while only 0.1% of mPO-
EMS non-dominated solutions are dominated by solutions found by SPEA2 and
none of them is dominated by solutions found by NSGA-II.

Table 2 shows the average values of the size of the space covered measure
achieved by the compared algorithms. It shows that mPOEMS is no worse on
any dataset and is significantly better (proved by t-test) on datasets with 2 and
4 knapsacks than the other two algorithms. This indicates, that mPOEMS finds
a better spread of non-dominated solutions than NSGA-II and SPEA2.
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Table 1. Comparison of mPOEMS, NSGA-II and SPEA2 using the coverage of two
sets measure on datasets with 2, 3 and 4 knapsacks and 750 items. n is the number of
knapsacks. Numbers in each cell show the fraction of non-dominated solutions obtained
by the algorithm in the given column that are dominated by non-dominated solutions
obtained by the algorithm in the given row.

NSGA-II SPEA2 mPOEMS

n=2
NSGA-II - 0.604 0.178
SPEA2 0.283 - 0.047

mPOEMS 0.708 0.966 -

n=3
NSGA-II - 0.02 0.0
SPEA2 0.887 - 0.323

mPOEMS 0.955 0.431 -

n=4
NSGA-II - 0.006 0.0
SPEA2 0.844 - 0.001

mPOEMS 0.961 0.971 -

Table 2. Comparison of mPOEMS, NSGA-II and SPEA2 using the size of the space
covered measure on datasets with 2, 3 and 4 knapsacks and 750 items

NSGA-II SPEA2 mPOEMS

n = 2 0.497 0.492 0.490
n = 3 0.689 0.689 0.688
n = 4 0.8195 0.822 0.8180

7 Conclusions and Future Work

This paper proposed a new multiobjective optimization algorithm mPOEMS
based on the single-objective POEMS, recently introduced in [4]. mPOEMS
extends the single-objective version of POEMS so that it (i) maintains a set
of best solutions found so far called solution base, (ii) uses multiobjective EA
(MOEA) instead of a simple EA to evolve a population alterations of the current
prototype, and (iii) employs a strategy for proper selecting the prototype in each
iteration.

mPOEMS was evaluated on a multiobjective 0/1 knapsack problem with 2
and 4 knapsacks (objectives) and 750 items. Results obtained by mPOEMS were
compared to the results achieved by two state-of-the-art multiobjective evolu-
tionary algorithms - NSGA-II and SPEA2, presented in [9]. The approaches
were compared using a performance measure checking the mutual dominance of
their outcomes and the size of the volume covered by the found non-dominated
solutions. Performance of mPOEMS is at least as good or even better as the
compared algorithms on all datasets. This is a very promising observation be-
cause the NSGA-II and SPEA2 were the best performing algorithms among the
algorithms analyzed in [9].

As this is the first study on the mPOEMS algorithm, there are many open
issues that should be investigated in the future:
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– Computational complexity of the algorithm and its sensitivity to parameters’
setting should be investigated.

– The performance of mPOEMS should be evaluated on other test prob-
lems with different characteristics, such as the problems with discontinuous
Pareto-optimal front.

– Since the mPOEMS is in fact a local search approach which uses an EA to
choose the next move to perform so it should be compared with other local
search approaches as well.
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Abstract. Kernel-based methods have shown significant performances in solving
supervised classification problems. However, there is no rigorous methodology
capable to learn or to evolve the kernel function together with its parameters. In
fact, most of the classic kernel-based classifiers use only a single kernel, whereas
the real-world applications have emphasized the need to consider a combination
of kernels - also known as a multiple kernel (MK) - in order to boost the classifi-
cation accuracy by adapting better to the characteristics of the data. Our aim is to
propose an approach capable to automatically design a complex multiple kernel
(CMK) and to optimise its parameters by evolutionary means. In order to achieve
this purpose we propose a hybrid model that combines a Genetic Programming
(GP) algorithm and a kernel-based Support Vector Machine (SVM) classifier.
Each GP chromosome is a tree that encodes the mathematical expression of a
MK function. Numerical experiments show that the SVM involving our evolved
complex multiple kernel (eCMK) perform better than the classical simple ker-
nels. Moreover, on the considered data sets, our eCMK outperform both a state
of the art convex linear MK (cLMK) and an evolutionary linear MK (eLMK).
These results emphasize the fact that the SVM algorithm requires a combination
of kernels more complex than a linear one.

1 Introduction

Various classification techniques have been used in order to detect correctly the labels
associated to some items. Kernel-based techniques (such as Support Vector Machine
(SVM) [1]) are an example of such intensively explored classifiers. These methods
represent the data by means of a kernel function, which defines similarities between
pairs of data [2]. One reason for the success of kernel-based methods is that the kernel
function takes relationships that are implicit in the data and makes them explicit, the
result being that the detection of patterns takes place more easily.

The selection of an appropriate kernel K is the most important design decision in
SVM since it implicitly defines the feature space F and the map φ. An SVM will work
correctly even if we do not know the exact form of the features that are used in F .
The performance of an SVM algorithm depends also on several parameters. One of
them, denoted C, controls the trade-off between maximizing the margin and classifying
without error. The other parameters regard the kernel function. For simplicity, Chapelle
in [3] has proposed to denote all these parameters as hyper parameters. All that hyper
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parameters have to be tuned. This is a difficult problem, since the estimate of the error
on a validation set is not an explicit function of these parameters.

The selection of an optimal kernel function and the values of the hyper parameters
is known in literature as model selection [3]. This task is usually performed by train-
ing the classifier with different functions picked up from a range of kernels and several
parameter values from a discrete set, which is fixed a priori. The optimal model corre-
sponds to the configuration that generates the best classification performance by using a
cross-validation technique [3]. Nevertheless, a simple kernel may not be always suitable
especially for very complex classification problems like those related to multi-modal
heterogeneous data. The real-world applications have emphasized the need to consider
a combination of kernels, denoted by multiple kernel (MK) [4,5]. Recent research works
have already shown that the MKs improve the performance of the SVM classifiers due
to their flexibility, allowing for a better learning of complex and heterogeneous data. In
addition, the optimisation of the hyper parameters plays a very important part.

The automatic MK designing is more than a simple kernel selection: in the MK
framework the best expression of the kernel function is learnt as a more or less com-
plex combination of simple kernels. In the same time, the optimal values of the hyper
parameters are found. One has to answer several important questions concerning the
design of a MK: It is possible to learn the MK function by using some training anno-
tated data? And, in the case of a positive answer, What kernels have to be used within
an MK for a given classification problem? How to find the optimal parameters of the
simple kernels involved in this combination? and What allows for better classification
performances: a linear MK or a complex MK ? If the answer for the first question can
be found in the literature [4,5,6,7,8,9], the answer of the last ones will be given in this
paper.

Therefore we choose to use the evolutionary framework in order to discover the op-
timal expression and its parameters of an MK function for several given problems.
We combine the Genetic Programming (GP) [10] and the SVM algorithms [1] within a
two-level hybrid model. The aim of the model we propose is to find the best MK func-
tion and to optimise its parameters, but also to adapt the regularisation kernel parameter
C. These three objectives are achieved simultaneously because each GP chromosome
encodes the expression of a complex multiple kernel (CMK) and its parameters. The
GP-kernel is involved into a standard SVM algorithm to be trained in order to solve
a particular classification problem. After an iterative process which runs more genera-
tions, an optimal evolved complex multiple kernel (eCMK∗) is provided. The proposed
combination of kernels could be learnt from thousands of examples while combining
hundreds of kernels within reasonable time. The eCMK we introduce is compared not
only to several well-known simple kernels, but also to a convex linear MK (cLMK) [4]
and to an evolved linear MK (eLMK) [7]. We will show that our model is able to find
more efficient complex MKs on the considered data sets.

The paper is organized as follows: The related work is presented in Section 2. Section
3 outlines the theory behind SVM classifiers giving a particular emphasis to the kernel
functions. Section 4 describes our technique for evolving CMKs. This is followed by
Section 5 where the results of the experiments are presented and discussed. Finally,
Section 6 concludes our paper.
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2 Related Work

An MK is in fact a combination of several simple kernels. This combination could
be either linear or complex. Regarding the linear combination, each simple kernel is
involved with a weight that represents its relative influence/importance in the LMK.
The optimal weights of the simple kernels included in an LMK have been found by
convex [4,5,6,3,11] or evolutionary methods [7,12].

About the shape of the complex combinations of kernels, to the best of our known,
the genetic algorithms (GAs) [8,9] have only been used in order to learn the expression
of an MK function.

As regards the optimisation of the hyper-parameters, extensive exploration such as
performing line search for one hyper-parameter or grid search for two hyper-parameters
is frequently applied. However, this search processes usually require training the model
several times with different hyper-parameter values and hence is computationally
prohibitive especially when the number of candidate values is large. Because of the
computational complexity, grid search is only suitable for the adjustment of very few pa-
rameters. More elaborated techniques for optimising hyper-parameters are the gradient-
based approaches [3]. Different optimisation criteria have been used: minimize the
leave-one-out error [1], minimax (maximize the radius margin bound and minimize the
validation or the leave-one-out errors) [3] or minimize the CV error [1]. Several promis-
ing recent approaches [13,14,15] are based on regularisation path algorithms that can
trace the entire solution path as a function of the hyper-parameter without having to
train the model multiple times. Evolutionary algorithms have also been used in order to
optimise the hyper parameters of an SVM classifier [16,17].

There are very few approaches that deal with both the problem of hyper parameter
optimisation and of MK function learning. Ong et al. [11] have shown that the MK
function is a linear combination of a finite number of pre-specified hyper-kernel evalu-
ations. The semi definite programming (SDP) approach [4,5,13,18] is applied for learn-
ing MK seen as a linear combination of positive semi definite matrices. Similar to this
idea, Bousquet and Herrmann [19] further restricts the class of kernels to the convex
hull of the kernel matrices normalized by their trace. The genetic algorithms have also
been used in order to optimise both the MK shape and its hyper parameters [8,9]. In
fact, other than a combination of kernels through different operations, these GA-based
approaches could optimised the hyper parameters of the SVM algorithm.

3 Support Vector Machines

Initially, the SVM algorithm has been proposed for solving binary classification prob-
lems [1,20]. Later, these algorithms have been generalized for multi-classes problems.
Consequently, we will explain the theory behind SVM only on binary-labelled data.
Suppose the training data has the following form: D = (xi, yi)i=1,m, where xi ∈ �d

represents an input vector and each yi, yi ∈ {−1, 1}, the output label associated to
the item xi. The SVM algorithm maps the input vectors to a higher dimensional space
where a maximal separating hyper-plane is constructed [21]. Learning the SVM means
to minimize the norm of the weight vector w under the constraint that the training
items of different classes belong to opposite sides of the separating hyper-plane. Since
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yi ∈ {−1, +1} we can formulate this constraint as: yi(wT xi + b) ≥ 1, i = 1, . . . , m.
The items that satisfy this equation in case of equality are called support vectors since
they define the resulting maximum-margin hyper-planes. To account for misclassifica-
tion, the soft margin formulation of SVM has introduced some slack variables ξi ∈ � –
see Eq. (1). Moreover, the separation surface has to be nonlinear in many classification
problems. The SVM algorithm can be extended to handle nonlinear separation surfaces
by using a feature function φ(x). The SVM extension to nonlinear data sets is based
on mapping the input variables into a feature space F of a higher dimension and then
performing a linear classification in that higher dimensional space. The important prop-
erty of this new space is that the data set mapped by φ becomes linearly separable if
an appropriate feature function is used, even when that data set is not linearly separable
in the original space. Hence, to construct a maximal margin classifier one has to solve
the convex quadratic programming problem encoded by Eq. (1), which is the primal
formulation of it:

minimisew,b,ξ
1
2wT w + C

∑m
i=1 ξi

subject to: yi(wT φ(xi) + b) ≥ 1 − ξi,
ξi ≥ 0, ∀i ∈ {1, 2, . . . , m}.

(1)

The coefficient C is a tuning parameter that controls the trade off between maximizing
the margin and classifying without error. The primal decision variables w and b define
the separating hyper-planes. Instead of solving Eq. (1) directly, it is a common prac-
tice to solve its dual formulation described by Eq. (2), where ai denotes the Lagrange
variable for the ith constraint of Eq. (1):

maximisea∈�m

∑m
i=1 ai − 1

2

∑m
i,j=1 aiajyiyjφ(xi)φ(xj)

subject to
∑m

i=1 aiyi = 0,
0 ≤ ai ≤ C, ∀i ∈ {1, 2, . . . , m}.

(2)

The optimal separating hyper-plane f(x) = wT φ(x)+b, where w and b are determined
by Eqs. (1) or (2) could be used in order to classify the un-labelled input data:

yk = sign

( ∑
xi∈S

aiyiφ(xi)φ(xk) + b

)
(3)

where S represents the set of support vector items xi. Because not all input data-points
are linear separable, it is suitable to use a kernel function. Cf. [2] a kernel is a function
K , such that K(x, z) = 〈Φ(x), Φ(z)〉 for all x, z ∈ �d. Note that all we required
are the results of such an inner product. Therefore we do not even need to have an
explicit representation of the mapping φ, nor to know the nature of the feature space.
The only requirement is to be able to evaluate the kernel function on all the pairs of data
items, which is much easier than computing the coordinates of those items in the feature
space. Evaluating the kernel yields a symmetric, positive semi definite matrix known as
the kernel or Gram matrix [22]. In order to obtain an SVM classifier with kernels, one
has to solve the following optimization problem:

maximisea∈�m

∑m
i=1 ai − 1

2

∑m
i,j=1 aiajyiyjK(xi, xj)

subject to
∑m

i=1 aiyi = 0,
0 ≤ ai ≤ C, ∀i ∈ {1, 2, . . . , m}.

(4)

In this case, Eq. (3) becomes: yk = sign
(∑

xi∈S aiyiK(xi, xk) + b
)
.
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Table 1. The expression of several classical kernels

Kernel name Kernel expression
Polynomial KPol (x, z) = (xT · z + coef)d

Radial basis function KRBF (x, z) = exp(−σ|x − z|2)
Sigmoid KSig (x, z) = tanh(σxT · z + r)

4 The Model for Evolving Complex MKs

The model we propose can be used in order to discover the optimal expression of an
eCMK. This model involves a hybrid approach, which combines a GP algorithm and
an SVM classifier. Each GP chromosome is a tree that encodes the mathematical ex-
pression of an eCMK to be used by the SVM algorithm. The quality of a GP individual
is given by the classification accuracy computed through running the SVM on the vali-
dation set in order to solve a particular classification problem. The hybrid approach is
structured on two levels: a macro level and a micro level (see Figure 1(a)).

The macro level algorithm is a standard GP [10], which is used in order to evolve the
mathematical expression of a CMK. We use steady-state evolutionary model [23] as an
underlying mechanism for our GP implementation. The evolutionary algorithm starts
by an initialisation step for creating a random population of individuals. The following
steps are repeated until a given number of generations/iterations are reached: two par-
ents are selected by using a binary selection procedure; the parents are recombined in
order to obtain an offspring O; the offspring is than considered for mutation; the new
individual O∗ (obtained after mutation) replaces the worst individual W in the current
population if O∗ is better than W .

The micro level algorithm is an SVM classifier. The original implementation of the
SVM algorithm proposed in libsvm [24] allows the use of several well-known kernels
(linear, polynomial, RBF and sigmoid, respectively, kernels) – see Table 1. In numer-
ical experiments, we also use a modified version of this algorithm, which is based on
our evolutionary CMK. The quality of each GP individual is computed by running the
SVM algorithm embedding the eCMK encoded in the current chromosome. The accu-
racy rate computed by the classifier (on the validation set) represents the fitness of the
GP tree.

4.1 The GP Representation of an MK

In our model, the GP chromosome is a tree encoding the mathematical expression of an
eCMK and its parameters. The tree-based representation of an MK allows for a larger
search space of kernel combinations than an array-based representation. However, we
constrained the GP individual representation to satisfy the kernel algebra [2] (regarding
the positiveness and the symmetry of the Gram matrix required by valid kernels).

The approach we propose is based on a particular type of GP tree: its leaves con-
tain either a simple kernel or a constant, where a kernel is a function with two argu-
ments (x and z) that represent the input vectors. Note that a GP tree must contain at
least one kernel in its leaves, otherwise the obtained expression will perform any dot
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Fig. 1. a) Sketch of our hybrid approach; b) A GP chromosome that encodes the CMK expression:
(Kθ

2 (x, z) + o1) × s1 × Kθ
2 (x, z) × (Kθ

3 (x, z) × Kθ
2 (x, z) + o2)

product between the input vectors x and z. The leaves of the tree contain elements
from the terminal set (TS), while the internal nodes contain elements from the function
set (FS).

For a better adaptation to the classification problem, our terminal set contains not
only the classic simple kernels, but also some ephemeral random constants [10]: TS =
KTS ∪ {oi, sj}, where KTS represents the terminal set that corresponds to those sim-
ple kernels (such as linear kernel, polynomial kernel, radial basis function (RBF) ker-
nel, sigmoid kernel – see Table 1), oi are offset (shifting) coefficients that control
the threshold of the mapping from the original space into the feature space F and
si are scaling coefficients that control the relative influence of the simple kernels in
the eCMK expression. Both types of coefficients must be represented by positive real
values.

Each simple kernel has associated a set of parameters θ that can affect the perfor-
mance of the SVM algorithm. Therefore, we will consider more kernels for the TS,
but with different parameters. The RBF kernel has only a parameter – the bandwidth σ
(in this case θ = {σ}). The sigmoid kernel has two parameters: the bandwidth σ and
the shifting coefficients r that controls the threshold of the mapping (θ = {σ, r}). The
polynomial kernel has only a parameter: the degree d (θ = {d}) – see Table 1.

In order to deal with shape and parameter optimisation, our solution is to consider
in the TS different simple kernels with different parameters θ . We will denote these
kernels as parametrised kernels Kθ. Thus, the GP algorithm will be able to discover the
best eCMK expression by combining the best parametrised simple kernels.

The function set contains three operations (FS = {+, ×, exp}) that preserve the key
properties of a kernel function. The theory of kernel algebra also specifies the power
function, but this operation (with a natural exponent) can be easily obtained as a re-
peated multiplication. An example of a GP chromosome is depicted in Figure 1(b).
Although we have used FS = {+, ×, exp} and TS = {Kθ

1 , Kθ
2 , Kθ

3 , o, s} for our GP
chromosome representation, only two functions (+ and ×), two kernels (Kθ

2 and Kθ
3 )

and three constants are actually involved in the current chromosome that represents the
expression of the eCMKiter,ind(x, z) .
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4.2 Genetic Operations

Initialization. We have used the grow method, which is a recursive procedure, in order
to initialize a GP individual. We have chosen this initialisation method, which is well
known in the literature, for its robustness. The root of each GP tree must be a function
from the FS. If a node contains a function, then its children are initialized either with
another function or with a terminal (a kernel or a constant). The initialization process is
stopped at the maximal depth of the GP tree. The leaves of the GP tree are initialised
with terminals taken from the TS. At least one leaf of the GP tree has to contain a
kernel in order to obtain a valid expression of the MK. The maximal kernel depth has to
be large enough in order to ensure an important search space for the optimal expression
of a CMK.

Crossover. We use the crossover operator in order to assure an important diversity of
the eCMKs. The crossover is performed in a tree-structure preserving way in order to
guarantee the syntactical validity of the offspring. Our model uses a one-cutting point
crossover with the particularity that the offspring has to contain at least one kernel in its
leaves.

Mutation. The purpose of the mutation operator is to produce a local small pertur-
bation of the current chromosome. A cutting point is randomly chosen: the sub-tree
belonging to that point is deleted and a new sub-tree is grown there by applying the
same random growth process that was used in order to generate the initial population.
Note that the maximal depth allowed for the GP trees limits the growth process of the
sub-tree. The mutation operator may generate new constants at any point in a run, like in
Koza’s implementation [10]. In our model, these ephemeral random constants are rep-
resented by the scaling and offset coefficients. Note that in our model the initialization,
recombination and mutation operators always generate valid eCMKs.

4.3 Fitness Assignment

The evaluation of the chromosome quality is based on a validation process. We must
therefore provide some information about the data set partitioning before describing
the fitness assignment process. Each data sample was randomly divided into two sets:
a training set (80%) - for model building - and a testing set (20%) - for performance
assignment. The training set was then randomly partitioned into learning (2/3) and val-
idation (1/3) parts.

Each eCMK encoded by a GP tree is taken into consideration in order to learn the
corresponding SVM model on the learning subset and for its classification performance
assignment on the validation subset. Therefore, the quality of an eCMK, which is the
current GP chromosome, can be measured by the classification accuracy rate (the num-
ber of correctly classified items over the total number of items) computed on the vali-
dation data set. Note that we are dealing with a maximization problem: the quality of
the MK is proven by the accuracy of the SVM algorithm that uses the respective ker-
nel. At the end of all GP generations (iterations), the optimal CMK, provided by the
best GP chromosome, denoted as eCMK∗, is involved again into the SVM classification
algorithm on the test data set.
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4.4 Comparison to the Previous Models

The model we propose combines a GP technique with an SVM classifier. The idea of a
hybrid approach GP + SVM is not new, but the representation that we proposed is novel.

Our approach is more general than the previous ones based on GP used in order
to evolve the expression of a kernel function [25,26,27]. This time our purpose is to
discover a new complex MK function and not only a simple one. The GP trees that
encode the MKs are more elaborated since they could contain, in their leaves, other
standard kernels whose good performance has been already proven.

Several important remarks can be also made regarding our previous eLMK model
presented in [7] and the eCMK model we propose in this paper. The eLMK is a com-
bination of kernels and it can be only linear, while the eCMK is a more complex one.
The objective function is also different in these models: the GP algorithm used in the
eCMK model optimises the shape and the parameters of an MK function, while the GA
has optimised only the weights of a linear combination of kernels [7].

Moreover, the expression of the CMK obtained by a GA-based model in [8,9] could
be actually less complex than that we are evolving now. Our approach is able to find a
more adapted MK expression due to: a larger set of operations involved in the expres-
sion of the eCMK (+, ×, exp). The power function with an integer exponent involved
in the GA-based eCMK model [8,9] appears implicitly in our GP-based approach due
to the tree-based representation of the MK; this representation is able to generate it by
itself as a repeated multiplication. A more complex form of the MK expression is due to
both the GP tree-based representation and the coefficients in the expression of a CMK.
A better adaptability of the CMK to the data is the third difference - the previous GA-
based eCMK model forces at least the polynomial and the ANOVA kernels to appear
in the expression of the MK. Our GP-based approach for eCMKs allows, according to
the data and their characteristics, to chose those simple kernels to be involved in the
combination (either all the kernels, or just a few of them).

5 Experiments and Discussion

We have evaluated our eCMK learning approach on several data sets taken from Ma-
chine Learning Repository UCI and Statlog data sets. These data sets were chosen in
order to allow comparisons with a state-of-the-art LMKs proposed in [4] and with an
evolutionary LMK proposed in [7]. These data sets are also widely used in the classifica-
tion community. All the data sets relate to binary-classification problems, but they have
different sizes (the number of items and the number of characteristics) and they belong
to different fields: medical, economical, and geographic: classification of radar returns
from the ionosphere (P1), breast cancer classification (P2), heart disease diagnosis (P3),
classifications of personal income (P4) and (P5).

A population of 50 individuals is evolved during 50 generations, which is a reason-
able limit in order to assure the diversity of our evolutionary complex multiple kernels
(eCMKs). We have also limited the maximal depth of a GP tree to 10 levels, which
allows us to consider complex combinations of maximum 210 kernels in reasonable
time. We have worked with the binary tournament mechanism for the chromosome
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selection. The crossover and mutation operations are performed by 0.8 and 0.3, respec-
tively, probabilities.

Research works have shown that the optimisation of the kernel parameters together
with the optimisation of the kernel expression (shape) are the most important steps to be
considered when building an SVM classifier. Therefore, we use a method proposed in
[3] in order to initialise the regularisation coefficient. A good value for the C parameter
could be the inverse of the empirical variance s2 of the data in the feature space [3].
We use this value also in the numerical experiments performed in order to evolve the
expression of an eCMK function.

5.1 Evolving the Complex Multiple Kernel Function

In this first experiment, our aim is to evolve a complex multiple kernel eCMK. Two
different terminal sets are used in order to evolve different combinations: a terminal set
that contains only several simple kernels KTS and a mixed terminal set that contains not
only simple kernels, but also some constants MTS = KTS ∪ {c1, c2, . . . cn}. Note
that in our experiments, these constants could be either scaling or shifting coefficients.
Therefore, the TSs used in our numerical experiments are:

1. a TS composed by several simple kernels with different parameters KTS={Kθ
Pol,

Kθ
RBF , Kθ

Sig} where the parameters θ of each simple kernel have been considered
in some discrete ranges: for the degree d of the Polynomial kernel 15 values (from 1
to 15) are considered, for the bandwidth σ of the RBF kernel the following values:
σqt = q · 10t, q = {1, 2, . . . , 9}, t = {−5, −4, . . . , −1} are considered and for
the sigmoid kernel all the combination between σ and r, where the σqt and the
r = 10u, u ∈ {−1, 0, 1} are taken into account.

2. a TS with different standard kernels and constants MTS=KTS∪{c1, c2, . . . , cn}.

We have to note several things about the constant values ci. Mercer conditions [22]
impose these constants to be positive. The [0, 1] range was suggested in [4,7] for all
the constants as the authors have represented the relative weights of the simple kernels
(SKs) involved into a linear MK (LMK). In our case, we have to deal with some scal-
ing and shifting coefficients that can appear or not in the expression of the eCMKs.
Therefore, several positive intervals have been considered for these coefficients in our
experiments [0, 1], [0, 10] and [0, 100], the best seems to be the [0, 1] range. During dif-
ferent runs, various expressions of the eCMK function are obtained, all of them with
about the same complexity.

The performances of the eCMKs based on various TSs are presented in Table 2:
the first two rows contain the accuracy rates (for each problem) computed by the SVM
algorithm involving our eCMK on the test set (unseen data). This eCMK is the best
MK (eCMK∗) obtained at the end of the evolutionary process on the validation set
(the best GP chromosome from the last generation). In Table 2 we also present the
performances of three classic kernels for all the test problems (the last three rows). We
emphasize the fact that the value of the penalty error C is adapted to the data and other
parameters involved in each simple kernel were optimised in order to achieve the best
classification performances. This allows us to verify if our eCMKs outperform these
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Table 2. The accuracy rate of various kernels. The first two rows present the accuracy rates com-
puted by the SVM algorithm embedding the eMK. The last three rows contain the performances
of the simple kernels for each test problem.

P1 P2 P3 P4 P5

Multiple
kernels

KTS 86.11±1.13 97.81±0.13 86.98±0.51 84.27±0.14 86.93±0.19
MTS 91.67±0.90 98.03±0.13 86.98±0.51 84.38±0.14 88.99±0.18

Simple
kernels

Kpol 77.77±1.36 97.58±0.14 85.79±0.53 84.26±0.14 86.24±0.20
Krbf 80.55±1.29 97.81±0.13 85.21±0.54 83.65±0.14 83.49±0.21
Ksig 66.67±1.54 97.81±0.13 77.91±0.63 82.73±0.14 84.52±0.21

optimised simple kernels and then to measure the improvements. In addition, Table 2
displays the corresponding confidence intervals (on the test set of each problem).

The values from Table 2 indicate that the eCMKs always perform better than the
optimised simple kernels. This is a very important result, if we take into account the
fact that GP algorithm has the possibility to choose among the simple kernels and their
parameters. In addition, by taking into account different TS compositions, we can re-
mark that the eCMKs based on a complex expression that contains simple kernels and
coefficients seem to perform slightly better than the eCMKs based only on simple ker-
nels (MTS 
 KTS). Therefore, it seems to be efficient to combine the kernels by the
coefficients. Thus, we are tempted to promote the eCMK based on a mixed TS to the
detriment of the eCMK based only on kernels.

5.2 Comparison between the Complex Evolved MKs and the Linear MKs

We aim to compare the improvements obtained by the SVM classifier which involves
our most promising eCMK∗s based on MTS with both the state of the art convex LMK
[4] and the evolutionary LMK already proposed in [7].

In order to emphasize the improvements obtained by involving an MK in the SVM
algorithm, an average performance improvement (Δ) is computed for each MK as the
mean of the improvements δi for all the problems. Note that δi is the difference between
the accuracy rate computed by the SVM algorithm with an MK (AccMK) and the ac-
curacy rate computed by the same SVM algorithm, but with a simple human-designed

kernel (SK) for the ith problem: δi = Acci
MK−Acci

SK

Acci
SK

, i = 1, 5, and Δ =
∑ 5

i=1 δi

5 ,

where SK could be one of the considered simple kernels: KPol, KRBF and KSig and
MK could be one of the MKs: eCMK - the evolutionary complex multiple kernel pro-
posed in this paper based on MTS, eLMK - the evolutionary linear multiple kernel [7]
and cLMK - the convex linear multiple kernel [4].

The values of the performance improvements are given in Table 3 and they show that
our eCMKs generally perform better than both the linear MKs (convex or evolutionary).
This may be because our combination of kernels, being more complex and involving,
is better adapted to each classification problem than the linear combinations.

In conclusion, the eCMK model based on the MTS seems to be the most promising
one. However, more experiments have to be performed in order to verify the advantages
of such an eCMK.
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Table 3. The average performance improvements for the MKs vs. SKs

Δ KPol KRBF KSig

MTS 7.45% 6.84% 22.10%
eLMK 2.00% 3.66% 9.33%
cMK 8.00% 3.00% 17.66%

6 Conclusion

A hybrid framework has been proposed in order to solve classification problems: a GP
algorithm combined with an SVM classifier for evolving complex MKs. We have per-
formed several numerical experiments in order to compare our evolutionary complex
multiple kernel to other kernels (human designed or not, simple or multiple). The nu-
merical results have shown that our evolutionary complex MKs perform better not only
than the simple kernels, but also than the linear MKs (convex or evolutionary LMKs).
Although our approach has a higher computational cost during the learning stage, once
the eCMK∗ is constructed, the classification stage is as fast as the previous MK ap-
proaches.

Moreover, the complex kernel functions must include not only different combination
of operators (+, * exp) and kernels (sigmoid, polynomial, RBF), but also some scal-
ing and shifting coefficients. The eCMKs based on efficient kernels, whose parameters
are optimised for the evolved combination of kernels seems to be the most promising
approach. The regularisation parameter C of the SVM-classifier allows also for perfor-
mance improvement. We emphases the fact that, to our knowledge, the approach we
propose is the only capable to achieve these three objectives in the same framework.

We will focus our further work on the validation of the approach proposed in this
paper for large data sets and using multiple data sets for the training stage; this could
help to evolve kernels that are more generic.
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Abstract. Menu systems are key components in modern graphical user
interfaces (GUIs), either for traditional desktop applications, or for the
latest web applications. The design of interface layout must consider dif-
ferent aspects resulting in a trade-off between often conflicting require-
ments. This trade-off is aimed at making effective use of interfaces in
order to meet user preferences and to conform to standard guidelines
at the same time. Assuming we are able to quantify such a trade-off,
the problem of finding a menu system able to maximize it figures as
a combinatorial optimization problem. In this paper we investigate the
application of genetic algorithms as a viable approach to identifying so-
lutions that can be used as a starting point for further fine-tuning.

Keywords: GUI design, menu layout, optimization, search based soft-
ware engineering.

1 Introduction

At the time of their introduction, menu systems represented a major shift from
command-line interfaces. The early systems were very simple and not hierar-
chical in structure. Since then, they have been innovating continuously. Menu
systems have been evolved not only in structure, functionality and purpose. To-
day, the menu system is a component of fundamental importance for making
GUIs attractive and usable, and special care is paid to their design and im-
plementation. This is not only related to traditional desktop applications. In
modern web applications, the menu systems still play a key role in helping the
user to navigate functionalities, especially after the advent of AJAX and Rich
Internet Applications (RIA) more recently. The menu system layout is a basic
ingredient for increasing productivity.

In designing a menu layout of good quality, engineers have to consider many
aspects including how effectively functionalities are retrieved and activated, what
standard guidelines suggest, and what are the preferences of users. These aspects
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are translated into several design requirements, that often are conflicting. For
instance, although having flat hierarchical structures improves accessibility, a
limitation to the number of items is necessary in order not to have long lists.
At the same time, users could have preferences for the item order. A trade-off
between these different requirements must be found in order to maximize the
menu system quality.

The problem of finding the layout that maximizes quality is combinatorial
in nature, as it depends on the arrangement of each item in different positions
onto the menu structure, with no construction rules for building an optimal
solution. This suggests that the problem is NP-hard. Nowadays, this task is not
yet supported by search techniques, and it is left to the experience of engineers.
In this paper we investigate the application of genetic algorithms in exploring
the space of menu systems at the search of solutions that can maximize the
requirements trade-off. The remainder of this paper is organized as follows: in
Section 2 we introduce the issues related to menu system design and we formally
define the optimization problem; in Section 3 we describe the characteristics of
the genetic algorithm used in our experimentation; Section 4 is aimed to present
some experimental results; Section 5 outlines conclusions and future work.

2 Designing and Optimizing a Menu System

Although menu systems are components each user has widely experienced, for
the sake of clarity, it can be useful to define terms in order to disambiguate
definitions. In the remainder of this paper we will refer to menu layout as the
hierarchical structure by which the user gains access to application functional-
ities. A menu layout is made of menus; each menu is made of a list of items
referring to submenus or to actions. The first are menus at lower level, the latter
are aimed to activate functionalities, thus they represent the menu system leaves
(i.e. terminals).

In designing a menu layout we have to take into the account:

– accessibility, as the ease of reaching desired actions.
– guidelines, as a set of best practices in organizing the menu layout
– preferences, as a wish list made explicit or implicit by the end user

As the menu system aims to quickly activate functionalities, we will consider
accessibility as the optimization driver, whilst we will refer to guidelines and pref-
erences as optimization preferences (constraints, when mandatory). Therefore,
the problem solution relies on finding a menu layout that maximizes accessibility
and compliance to guidelines and user preferences.

Menu selection involves most aspects of human information processing. In-
deed, the user is asked for visually inspect the menu, reading and comprehending
items in order to find a path that will lead to the desired functionality; choosing
the best option until the action is not reached and task accomplished. The menu
system layout is expected to better support the user in this task.

So the main issue in designing a good menu system is about how to organize
menu items in the hierarchy in order to make actions and to easy accessible.



244 L. Troiano et al.

In early stages, researchers focused on functional features a menu system is
demanded to have in order to improve accessibility. For instance, Walker and
Smelcer [1] investigated the relationship between the structure made of walking
menus or cascading menus and the time required by an user to reach the tar-
get action. In our work, we assumed this issue solved by the current standard
implementations, so our focus is mostly on the relationship between the menu
hierarchical structure (layout) and accessibility.

Various models for predicting the selection time have been proposed, and
research aimed to find the structure that minimizes it. If items are sorted, e.g.
alphabetically, search time can be predicted by Hick’s Law [2], which states
that the time to locate an item is a logarithmic function of the menu size. When
menus are not alphabetically ordered, users have to scan them in a linear fashion
to locate an item. However, if the user has memorized the position of items in a
menu, search time becomes constant. Thus, selection times is reduced to the time
needed to reach the item position. Fitts’ Law [3,4] predicts the time required to
move the cursor to a particular item. It describes the movement time taken to
acquire, or point to, a visual target, stating that the movement time needed to
acquire a target is a logarithmic function of the ratio between the target distance
d and the target width w, known as the task’s Index of Difficulty (ID). According
to Fitts’ law, menu items that appear further down the menu have a greater ID.
As this model does not consider constraints in the motion trajectory, Fitts’ law
cannot accurately predict the movement time in cascading pull-down menus. If
the cursor has to be steered along a tunnel, movement time is better modeled
by Steering Law [5]. According to this law, movement time is determined by the
ratio between the tunnel distance td and the tunnel width tw.

Hollink and van Someren [6] reviewed the assumptions underlying prediction
models for the selection time, and proposed a method to validate these assump-
tions off-line. In their method, after the relationship between the path followed
through the menu system and the navigation time, this last is determined by
two structural properties of the path: the number of menu items a user has to
open and for each navigation step the number of menu items the user has to
read. Furthermore the prediction is based on the users’ choice strategy, the node
opening function and the node choice function.

Recently, Bernard [7] has presented a further model for predicting the selection
time. The Hypertext Accessibility Index measure (HHAI) is defined as

HHAI(x) =

√√√√
L∑

i=1

∑
j∈Ni

log2(bj + 1) log2(dj + 1) (1)

where

– x is the menu structure
– L is the maximum number of levels of x
– Ni is the set of menus and menu items at level i
– bj is the number of children of j
– dj is the depth of j, assuming for the root and all menu item d = 1
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It can be easily verified that HHAI ∈ [1, +∞): the lower HHAI is, the more the
menu items are accessible; when all menu items are assigned to the root menu
(i.e. no submenu is considered) HHAI = 1. An interesting characteristic of this
model is that HHAI index predicts the expected navigation time on the basis only
of the menu system layout. Bernard’s model shows that though broader trees in
general tend to have better search efficiency than deeper trees, topological shape
has also an important effect. The HHAI metric has been validated by comparing
predictions with the empirical results found by others and Bernard himself.

Bernard’s findings are in accordance with results of other researchers. For in-
stance, Botafogo et al. [8] found that imbalance might indicate a poorly designed
hypertext hierarchy, though this is sometimes unavoidable in some domains.
They propose two metrics for imbalance, namely the ”depth imbalance” and
”child imbalance”. The depth imbalance metric measures the variance in depth
of a node’s children; the child imbalance measures the variance in the number
of descendants (i.e. sections, subsections, pages, etc.) of a node’s children.

In the last years, other techniques have been introduced in order to improve
the selection time in cascading pull-down menus, focusing on the selection of
first-level items. Shorter selection times have been reached by either decreasing
the distance to the menu items, or by increasing the size of the menu item.
A split menu adapts to user behavior and relocates the menu items according
to usage. Frequently selected items are moved into the top split of the menu
and seldom selected items are pushed downward, i.e. the distance to an item
depends on selection probability [9]. Ahlström [10] modeled and improved cas-
cading menu selection times through the use of ’force-fields’, a variant of sticky
widgets, that attracts the cursor towards the cascading menu. The evaluation
did not investigate whether the technique caused an adverse effect on selecting
non-cascading items.

Designers usually use guidelines to organize the menu structure. They provide
a collection of best practices in organizing and structuring the menu layout.
Examples are Apple’s Human Interface Guidelines [11] and Sun’s Java Look and
Feel Guidelines [12]. Guidelines are either too specific or too vague, so they do
not always apply to the problem at hand [13]. For instance an Apple’s Human
Interface Guidelines suggests putting on menu bar some particular menus that
an user expects to find such as ”File”, ”View” and ”Help”. Guidelines say, as a
general rule, to avoid creating long menus, in fact they are difficult for the user to
scan and can be overwhelming, from other side it has not to put many items in a
single menu and it needs to regrouping them in other menus. In most guidelines,
it is suggested not to go further two levels of cascading menus, although in some
cases it is convenient to violate this rule.

According to the current literature, building of menu hierarchy and optimiza-
tion is a challenging task, whose applications go further the desktop and web
applications. However, building a quality menu system requires a large group of
users (e.g. focus groups) and a large number of trials in order to find the best
way or structuring the menu layout. Search techniques, can provide a valuable
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support in screening alternatives and in providing starting point that can be
refined more efficiently.

3 Algorithm

The algorithm is inspired to the Simple GA given by Goldberg [14]. The structure
is outlined in Fig.1.

Fig. 1. Algorithm structure

After the problem is setup in terms of menu items and preferences, the algo-
rithm is instanced and the initial population is randomly generated. The algo-
rithm body is made of following stages:

– evaluation: a fitness score is assigned to each population individual.
– genetic processing : here individuals are genetically processed by selection,

crossover and mutation

After K generations the best individual is obtained. Valid (i.e. legal) individuals
are compliant with mandatory preferences (constraints), invalid not.

Preferences are given as a set of relational and structural properties, each with
an assigned priority. In our case, we assumed priorities on a scale of five: 1- very
important, 2- important, 3- medium, 4- not important, 5- not very important.
Preferences are facultative. Besides them, we assumed mandatory preferences
(i.e. constraints), with priority 0- mandatory.

3.1 Chromosome Structure and Genetic Operators

Among the different ways of representing a tree structure by a chromosome, we
choose a coding in which each gene represents the path from root to a menu
item as depicted by Fig.2.

The number of genes is not necessarily equal to the number of action (i.e.
terminal) items. In some cases, an action could be accessed by different paths.
Therefore the chromosome is as long as the sum of allowed occurrences of each
action. For example, if an action is allowed twice, there is a need for two genes
to that action, each representing a different path. The mapping between genes
and actions is kept by an association table. When the path is empty, the action
item is associated to the root (e.g. gene N in figure); if the path is null, that
action item occurrence is not considered in the menu layout (e.g. gene 1). Such a
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Fig. 2. Chromosome with mapping to the menu layout

chromosome structure is more robust to genetic operations than others, allowing
a better control of action items, whose best placement in the menu layout is the
ultimate goal of the optimization algorithm. The algorithm is based on three
genetic operations:

– selection: a tournament selection has been preferred in order to be less sen-
sitive to the fitness scaling

– crossover: single point crossover
– mutation: gene mutation with a random choice of insertion, deletion and

modification of single items.

In particular, the algorithm adopts elitism by random substitution with the best
individuals. Tournament is implemented by selecting the best individual after t
pairwise comparisons, as described in [14]. Crossover and mutation are described
in Fig.3.

Fig. 3. Crossover and mutation

The menu layout is built by adding paths in the order they occur in the chro-
mosome genes. So, the actual order of items in a certain menu depends on the
order they occur in the chromosome, given the same path to them. For instance,
if A-B-L precedes A-B-M, L will come first in the menu A-B, otherwise the op-
posite. A permutation of the mapping entries would allow to obtain different
placements. However, the mapping is fixed and not processed by genetic opera-
tors. The reason is that the initial path building is purely random. Thus, different
placement are considered by the initial production of alternatives. Considering
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the mapping permutation would not be beneficial, adding only an additional
degree of freedom to control by the genetic algorithm.

3.2 Fitness Function

The fitness function of an individual x is aimed to model the trade-off between
accessibility and preference compliance. Thus it is defined as convex combination

fitness(x) = σ · H(x) + (1 − σ) · C(x) (2)

where σ ∈ [0, 1], H(x) is the degree of accessibility, and C(x) is the degree of
constraints’ compliance. In particular, H(x) is defined as

H(x) = ek(1−HHAI (x)) (3)

where HHAI(x) is defined by Eq.(1). The constant k controls the exponential
decay. Instead the degree of preference compliance is defined as the weighted
mean

C(x) =

m∑
i=1

p̄ici(x)

m∑
i=1

p̄i

(4)

where m is the number of preferences, p̄i = 1 − pi is the constraint importance,
and ci(x) is the compliance of x to the preference ci. Therefore, we assumed a
compensation between optimization criteria.

The problem of finding an optimal menu layout consists in placing all action
items by maximizing accessibility and preference compliance. Preferences can be
of different kinds. In our experimentation we considered the following types:

– Path ordering (ancestor , successor): defines a ordering relation between
ancestor and successor along a path

– Menu ordering (predecessor, follower): defines a ordering relation between
predecessor and follower whenever they coexist within the same menu

– Number of menu items (menu, min, max ): defines the min and max
number of items present in menu

– Occurrence (item, min, max ): defines the min and max number of occur-
rences of item

– Level (item, min, max ): defines the min and max level for item
– Menu belonging (item, menu): item should belong to menu

Each preference has a priority pi ∈ [1, 5], where 1 is the highest priority (i.e. very
important), 5 the lowest (i.e. not very important). The degree of compliance of
x to each preference is computed as

ci(x) = 1 − vi(x)
mvi(x)

(5)

with vi(x) giving the number of criterion violations of x, and mvi(x) the maxi-
mum number of possible violations.
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Fig. 4. Preferences. The top-left table provides the number of items at each level, the
middle-left table provides two path ordering preferences, the top-right table provides for
each menu the desired level and the number of occurrences, the bottom table provides
menu belonging preferences specifying the priority of each preference.

4 An Example of Application

As an example of application let us compose a menu layout made of 25 ac-
tion items Z1..Z25 and 12 submenus A..L. Layout generation is driven by 60
preferences, outlined in Figure 4. The algorithm was setup with standard pa-
rameters: tournaments = 1, crossover probability = 0.8, mutation probability =
0.02, elitism = 2.1 Figure 5 and Figure 6 show the layout of the best individual
respectively after 10 and 1000 generations. Figure 5 depicts a layout with fitness
= 0.7949. Indeed, this structure does not satisfy some preferences. In particular,

– the number of children in the root is more than 5
– the tree does not meet any level preference
– menus A and B should not have any repetition

On the other side, A, B and C are in the right order on the menu bar (at level
1) as expected. Instead layout presented in Figure 6 meets better the preference
set, thus its fitness value is 0.9717.

When some preferences become mandatory (constraints), the problem be-
comes harder to solve. In Figure 7 we show a solution layout in this case. In
particular, all preferences with priority 2 have been considered mandatory.

The low fitness value (0.566) is due to conflicts between constraints and some
other preferences, as it can be easily noticed by observing tables in Figure 4.
Obviously, when constraints are in contradictory, there is no solution to the
optimization problem. Therefore, it is important to choose the preference and
constraint set appropriately, in order to avoid conflicts and contradictions. This
is the situation depicted in Figure 8.
1 Parameters have been chosen by a simple qualitative analysis, according to com-

mon values adopted for them, without any in-depth quantitative analysis for their
optimization.
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Fig. 5. Layout of the best individual after 10 generations (fitness 0.7949)

Fig. 6. Layout of the best individual after 1000 generations (fitness 0.9717)

Fig. 7. Layout with constraints (fitness = 0.566)

Fig. 8. Layout with compatible constraint and preference sets (fitness = 0.9952)
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In this case we defined a legal individual when the menu bar has 4 or 5 items,
and A, B, C are on the menu bar with no repetition. Furthermore we imposed
that item Z1 has to be an action of menu A. These conditions are expressed
by 10 constraints: 3 level constraints, 3 occurrence constraints, 1 number of
children constraint, 2 path ordering constraints, 1 belonging constraint. The
algorithm run 500 generations on population with 1000 individuals. At the end,
legal individuals were 102 (i.e. 898 illegal). Fitness of the best legal individual
was 0.9952, with H = 0.9498.

We can note that action Z10 is in A, action Z21 in menu D as expected by
the menu belonging preferences. Furthermore, some menu (namely F ,G,H ,I) are
allowed to occur more than once, whilst L no more than twice. We can verify
that in layout of Figure 8 these preferences are fully satisfied. In particular, F
and H occur once, whilst G and L never. Moreover, the number of children of
level 2 are between 2 and 5, and between 1 and 2 at level 3.

These performances are not episodic, as it could be argued. We run the al-
gorithm several times with a different number of preferences in order to study
quantitatively the convergence. In Figure 9, we report the median of best fitness
with a different cardinality of the preference set and population size (100, 200,
500, 1000 individuals). Preference sets of different cardinality (15, 30, 45, 60
preferences) have been chosen with the same distribution of priorities, so that
analysis is independent on this factor.

We can notice that the algorithm reached high values of fitness in all cases,
although the behavior differs qualitatively according to the number of preferences
considered at a time, thus according to the problem difficulty. So, if in the case of
15 preferences, convergence is reached pretty soon, an increasing time is required

Fig. 9. Algorithm convergence
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Fig. 10. Algorithm convergence with priority shift

in the case of 30, 45 and 60 preferences. Also population size has an impact on
convergence when the number of preferences increases. Indeed, we can observe
how the algorithm is not able to converge properly in the case of 60 preferences
with 100 and 200 individuals. Another point of interest is the convergence of
the algorithm when priority changes. In Figure 10 is outlined the median fitness
of the best individual when preference priority is increased (1-3) and decreased
(3-5) against the nominal case (2-4).

Obviously the fitness value cannot be the same, as the priority ratios change.
However, we can notice how convergence is not heavily affected by a shift of
priority, thus resulting robust tho this situation. This means that priority mag-
nitude does not represent a sensible aspect to take into consideration.

5 Conclusions and Future Work

In this paper we presented a genetic algorithm for optimizing the layout of a
GUI menu system, keeping into the account accessibility, user preferences and
standard guidelines. The resulting solution can be used as a robust starting point
aimed to be refined by software engineers. Experimentation provided very en-
couraging results, proving the ability of a simple genetic algorithm in converging
towards solutions with high fitness, also in presence of mandatory constraints.
Moreover, the algorithm has been proven to scale the number of constraints,
and to be robust to constraint preference variations. However, we aim to inves-
tigate two main directions in the future. The first is how to integrate mandatory
constraints into the solution generation, so there will be no illegal individuals
to deal with. Genetic programming seems to be a promising solution to this
problem. The second is about how to find out implicit preferences by analyzing
the usage of generated menus, instead of forcing the user to make explicit all
her/his preferences. In this case, making the genetic algorithm interactive poses
additional interesting questions to be answered regarding to how to sample the
search space and to gather user feedback.
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Abstract. We propose a path relinking approach for the vehicle routing
problem with time windows. The path relinking is an evolutionary mech-
anism that generates new solutions by combining two or more reference
solutions. In our algorithm, those solutions generated by path relinking
operations are improved by a local search whose neighborhood consists
of slight modifications of the representative neighborhoods called 2-opt∗,
cross exchange and Or-opt. To make the search more efficient, we pro-
pose a neighbor list that prunes the neighborhood search heuristically.
Infeasible solutions are allowed to be visited during the search, while the
amount of violation is penalized. As the performance of the algorithm
crucially depends on penalty weights that specify how such penalty is
emphasized, we propose an adaptive mechanism to control the penalty
weights. The computational results on well-studied benchmark instances
with up to 1000 customers revealed that our algorithm is highly effi-
cient especially for large instances. Moreover, it updated 41 best known
solutions among 356 instances.

1 Introduction

The vehicle routing problem with time windows (VRPTW) is the problem of
minimizing the total traveling distance of a number of vehicles, under capacity
and time window constraints, where every customer must be visited exactly
once by a vehicle. The capacity constraint signifies that the total load on a route
cannot exceed the capacity of the assigned vehicle. The time window constraint
signifies that each vehicle must start the service at each customer in the period
specified by the customer. The VRPTW has a wide range of applications such as
bank deliveries, postal deliveries, school bus routing and so on, and it has been
a subject of intensive research focused mainly on heuristic and metaheuristic
approaches. See the survey by Bräysy, Dullaert and Gendreau [1] for evolutionary
algorithms.

We propose a path relinking approach for the VRPTW. The path relinking [2]
is an evolutionary mechanism that generates new solutions by combining two or
more reference solutions. Our algorithm invokes a path relinking operation for
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generating new candidate solutions, which are then improved by a local search
whose neighborhood consists of slight modifications of the representative neigh-
borhoods called 2-opt∗, cross exchange and Or-opt. To reduce the computation
time for searching these neighborhoods, we propose a neighbor list that prunes
the neighborhood search heuristically. In our algorithm, infeasible solutions are
allowed to be visited during the search, while the amount of violation is penal-
ized. The amount of violation for the capacity constraint is estimated by the
amount of capacity excess. To estimate the amount of violation of time win-
dow constraints of each route, we consider the total amount of traveling time to
be shortened to satisfy the constraints. We also incorporate in our algorithm a
frequency-based penalty, in which a customer who often appears in an infeasible
route of locally optimal solutions is penalized to direct the search to make those
routes with many heavily penalized customers feasible. As the evaluation of these
penalties takes time if naively implemented, we propose an efficient algorithm,
which enables us to evaluate each neighborhood solution in O(1) time. We also
propose an adaptive mechanism to control the weights of these penalties. Finally
we report computational results on well-studied benchmark instances with up to
1000 customers. The results show the high competence of our algorithm against
existing methods; it updates 41 best known results among 356 instances within
a reasonable amount of computation time.

2 Problem Definition

Here we formulate the vehicle routing problem with time windows. Let G =
(V, E) be a complete directed graph with vertex set V = {0, 1, . . . , n} and edge
set E = {(i, j) | i, j ∈ V, i �= j}, and M = {1, 2, . . . , m} be a vehicle set. In this
graph, vertex 0 is the depot and other vertices are customers. Each customer i
and each edge (i, j) ∈ E are associated with:

i. a fixed quantity ai (≥ 0) of goods to be delivered to i,
ii. a time window [ei, li],
iii. a traveling time tij(≥ 0) and a traveling distance cij(≥ 0) from i to j.

We assume a0 = 0 and e0 = 0 without loss of generality. Each vehicle has an
identical capacity u.

Let σk denote the route traveled by vehicle k, where σk(h) denotes the hth
customer in σk, and let

σ = (σ1, σ2, . . . , σm).

Note that each customer i is included in exactly one route σk, and is visited by
vehicle k exactly once. We denote by nk the number of customers in σk. For
convenience, we define σk(0) = 0 and σk(nk + 1) = 0 for all k (i.e., each vehicle
k ∈ M departs from the depot and comes back to the depot). Moreover, let si

be the start time of service at customer i (by exactly one of the vehicles) and sa
k

be the arrival time of vehicle k at the depot. Note that each vehicle is allowed
to wait at customers before starting services.
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Let us introduce 0-1 variables yik(σ) ∈ {0, 1} for i ∈ V \ {0} and k ∈ M by

yik(σ) = 1 ⇐⇒ i = σk(h) holds for exactly one h ∈ {1, 2, . . . , nk}.

That is, yik(σ) = 1 holds if and only if vehicle k visits customer i. The traveling
distance of a vehicle k is expressed as d(σk) =

∑nk

h=0 cσk(h),σk(h+1). Then the
problem we consider in this paper is formulated as follows:

minimize
∑
k∈M

d(σk) (1)

subject to
∑
k∈M

yik(σ) = 1, i ∈ V \ {0} (2)

∑
i∈V \{0}

aiyik(σ) ≤ u, k ∈ M (3)

t0,σk(1) ≤ sσk(1), k ∈ M (4)
sσk(i) + tσk(i),σk(i+1) ≤ sσk(i+1), 1 ≤ i ≤ nk − 1, k ∈ M (5)
sσk(nk) + tσk(nk),0 ≤ sa

k ≤ l0, k ∈ M (6)
ei ≤ si ≤ li i ∈ V \ {0} (7)
yik(σ) ∈ {0, 1}, i ∈ V \ {0}, k ∈ M. (8)

Constraint (2) means that every customer i ∈ V \ {0} must be served exactly
once by a vehicle. Constraint (3) means a capacity constraint for vehicle k.
Constraints (4)–(6) require that each vehicle cannot serve a customer before
arriving at the customer. Constraint (7) is a time window constraint for each
customer. Note that essential decision variables in this formulation are routes
σk, since the values of yik(σ) are automatically determined from σ, and finding
appropriate values for si and sa

k, if any, is easy when σ is fixed.

3 Local Search

In this section, we describe our local search (LS). Our LS searches a visiting
order σ = (σ1, σ2, . . . , σm), which can be infeasible with respect to the capac-
ity and time window constraints. The algorithm evaluates each route σk by a
function p(σk), which is the sum of its traveling distance d(σk) and the penalty
for violation of constraints if σk is infeasible, and it evaluates a solution σ by∑

k∈M p(σk). The details of function p(σk) will be discussed in Section 4. Our LS
starts from an initial solution σ and repeats replacing σ with a better solution
(with respect to

∑
k∈M p(σk)) in its neighborhood N(σ) until no better solution

is found in N(σ). To define the neighborhood N(σ), we use the 2-opt∗, cross ex-
change and Or-opt neighborhoods with slight modifications. For the 2-opt∗ and
cross exchange neighborhoods, we propose a neighbor list to prune the neigh-
borhood search heuristically. A similar technique was successfully applied to the
traveling salesman and vehicle routing problems [3, 4], in which the list is de-
termined only on the basis of distance; therefore it is not appropriate to apply
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the existing method directly to the VRPTW. In Section 3.1, we describe the
neighbor lists that take into account the time windows, and in Section 3.2, the
details of the neighborhoods are described.

3.1 Neighbor List

We consider a neighbor list for each customer i, which is a set of customers
preferable to visit immediately after i. Each customer j that can be visited after
i (i.e., ei + tij ≤ lj) is evaluated by max{tij , ej − li}. When a vehicle visits j
immediately after i, it takes at least max{tij , ej−li} time between the start times
of i and j. Hence, if this value is small, it is preferable to visit j immediately
after i. The algorithm computes these values once at the beginning and stores
the best Nnlist (a parameter) customers as a neighbor list of i. We set Nnlist = 20
in the experiments.

3.2 Neighborhoods

We use the 2-opt∗, cross exchange and Or-opt neighborhoods with slight mod-
ifications, wherein we restrict the 2-opt∗ and cross exchange neighborhoods by
using the neighbor lists.

The 2-opt∗ neighborhood was proposed in [5], which is a variant of the 2-opt
neighborhood [6] for the traveling salesman problem. A 2-opt∗ operation removes
two edges from two different routes (one from each) to divide each route into two
parts and exchanges the second parts of the two routes. Our algorithm searches
only those solutions obtainable by a 2-opt∗ operation in which at least one of
the newly added edges is in the neighbor list. The size of this neighborhood is
O(Nnlistn).

The cross exchange neighborhood was proposed in [7]. A cross exchange op-
eration removes two paths from two routes (one from each) of different vehicles,
whose length (i.e., the number of customers in the path) is at most Lcross (a
parameter), and exchanges them. Our algorithm searches only those solutions
obtainable by a cross exchange operation in which a newly added edge linking
the former part of a route and the path from another route is in the neighbor
list. The size of this neighborhood is O((Lcross)2Nnlistn). We set Lcross = 3 in
the experiments.

The cross exchange and 2-opt∗ operations always change the assignment of
customers to vehicles. We also use an intra-route neighborhood to improve indi-
vidual routes, which is a variant of the Or-opt neighborhood used for the trav-
eling salesman problem [8]. An intra-route operation removes a path of length
at most Lintra

path (a parameter) and inserts it into another position of the same
route, where the position is limited within length Lintra

ins (a parameter) from the
original position. The size of the intra-route neighborhood is O(Lintra

pathLintra
ins n).

We set Lintra
path = 3 and Lintra

ins = 10 in the experiments.
Figure 1 is an illustration of the neighborhoods. In Figure 1, squares represent

the depot (which is duplicated at each end) and small circles represent customers
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(c) Intra-route(a) 2-opt∗ (b) Cross exchange

Fig. 1. Neighborhood operations in our local search

in the routes. A thin line represents a route edge and a thick line represents a
path (i.e., more than two customers may be included). The dotted boxes mean
that edges in them are in the neighbor lists.

Our LS searches the above intra-route, 2-opt∗ and cross exchange neighbor-
hoods, in this order. Whenever a better solution is found, the LS immediately
accepts it (i.e., we adopt the first admissible move strategy) and resumes the
search from the intra-route neighborhood.

4 Evaluation Function p(σk)

We first define the function p(·) to evaluate a route σk. For convenience, through-
out this section, we assume that vehicle k visits customers 1, 2, . . . , nk in this
order and let customer nk+1 represent the arrival at the depot (i.e., snk+1 = sa

k).
The function we adopt is

p(σk) =

{
d(σk), if σk is feasible
d(σk) + αpc(σk) + βpt(σk) +

∑nk

h=1 γh, otherwise,
(9)

where pc(σk) is the amount of capacity excess (i.e., pc(σk)=max {0,
∑nk

i=1 ai − u})
and pt(σk) is the minimum total amount of traveling times to be shortened to
satisfy the constraints; i.e.,

pt(σk) = min

{
nk+1∑
h=1

τh

∣∣∣∣
s0 ≥ 0, sh−1 + th−1,h − τh ≤ sh,

τh ≥ 0, eh ≤ sh ≤ lh, h = 1, . . . , nk + 1

}
.

In function p, α, β and γi for each i ∈ V are parameters, which are controlled
adaptively (see Section 5). Parameters α and β are controlled reflecting the dif-
ficulties in satisfying the capacity constraint and the time window constraint,
respectively. Parameter γi reflects the difficulty in visiting customer i by a fea-
sible route. In the evaluation of (9), each traveling time can be shortened by
an arbitrary amount (i.e., the resulting traveling time th−1,h − τh can be nega-
tive) to satisfy time window constraints while the shortened amount is penalized
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as pt(σk). This idea of defining pt was proposed by Nagata [9]. The algorithm
computes p(σk) by each term separately. In the rest of this section, we focus on
the computation of pt(σk), since the other terms can be efficiently computed by
using standard data structures (e.g., [10, 11, 12, 13]).

A key observation to the efficient computation is that each route σk of a
neighborhood solution is a recombination of a few paths of the current solution.
Hence we consider a speeding up approach that stores some useful information
of paths from the depot to customers and those from customers to the depot,
among those paths of the current routes. For each customer h in a new route
σk, let Fh (resp., Bh) be some data structure that contains the information of
the path (of σk) from the depot to h (resp., from h to the depot). Note that Fh

and Bh signify the information of the paths of the new route σk. For example,
if σk is generated by a 2-opt∗ operation, and the path from the depot to h and
the path from h + 1 to the depot are from the current solution, then Fh and
Bh+1 are available from the stored information when they are used to compute
p(σk). On the other hand, for the cross exchange and intra-route neighborhoods,
Fh and Bh for customers h in inserted paths need to be recomputed, because in
the new route σk the path from the depot to such an h and that from h to the
depot are different from those in the current route. What is important in this
approach is to execute the followings efficiently for a given σk:

1. construction of Fh+1 from Fh (the forward computation),
2. construction of Bh from Bh+1 (the backward computation), and
3. computation of pt(σk) from Fh and Bh+1.

It is not hard to show that each neighborhood solution can be evaluated in
O(T ) time, if the above operations can be done in O(T ) time for any h (0 ≤
h ≤ nk). However, to accomplish this, the neighborhood need to be searched
in an appropriate search order. The detailed description of such a search order
is explained in Ibaraki et al. [10]. This strategy has also been used to devise
efficient algorithms for a variety of VRPTW variants [11,12,13]. Below we show
that the forward and backward computation can be done in O(1) time and the
computation of pt(σk) from Fh and Bh+1 can also be done in O(1) time. Hence
the algorithm can evaluate each neighborhood solution in O(1) time.

Let fh be the minimum total amount of traveling times to be shortened to
satisfy the time window constraints for customers 1, 2, . . . , h when vehicle k visits
them along the route. Let sf

h be the start time of service at h that attains fh

together with sf
1, . . . , s

f
h−1, and let Fh = (fh, sf

h). Then the forward computation
can be done by:

sf
h+1 = min

{
lh+1, max{sf

h + th,h+1, eh+1}
}

(10)

fh+1 = fh + max{sf
h + th,h+1, eh+1} − sf

h+1. (11)

In (10), if lh+1 < max{sf
h + th,h+1, eh+1} holds, the traveling time is shortened

to satisfy the time window constraint and this amount is added to fh+1 in (11).
The backward computation can be done similarly. Let bh be the minimum

total amount of traveling times to be shortened to satisfy the time window
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constraints for customers h, h + 1, . . . , nk + 1 when vehicle k starts from h and
returns to the depot along the route. Let sb

h be the start time of service at h
that attains bh together with sb

h+1, . . . , s
b
nk+1, and let Bh = (bh, sb

h). Then the
backward computation can be done by:

sb
h = max

{
min{lh, sb

h+1 − th,h+1}, eh

}
(12)

bh = bh+1 + sb
h − min{lh, sb

h+1 − th,h+1}. (13)

We can compute pt(σk) from Fh = (fh, sf
h) and Bh+1 = (bh+1, s

b
h+1) by

sf
h+1 = min

{
lh+1, max{sf

h + th,h+1, eh+1}
}

(14)

pt(σk) = fh + bh+1 + max{0, sf
h+1 − sb

h+1}. (15)

5 Adaptive Mechanism to Control Parameters

In this section, we describe an adaptive mechanism to control the parameters
α, β and γi for each customer i. The algorithm (in which the local search (LS)
is executed many times) updates these parameters whenever the LS outputs a
locally optimal solution. We set their initial values to α = 1000, β = 1000 and
γi = 100 in the experiments.

Let psum
c (σ) =

∑
k∈M pc(σk) and psum

t (σ) =
∑

k∈M pt(σk), and let pmin
c (resp.,

pmin
t ) be the minimum psum

c (σ) (resp., psum
t (σ)) of the solutions in the current

reference set R of good solutions, where rules for maintaining R are described in
Section 6. Let Pc (resp., Pt) be the number of moves, during the last call to the
LS, to a solution σ whose psum

c (σ) (resp., psum
t (σ)) is less than pmin

c (resp., pmin
t )

or equals to 0. Let Ntotal be the total number of moves during the last call to
LS, and let Nc = Ntotal −Pc and Nt = Ntotal −Pt. We use parameters δinc, δdec,
δcust
inc and δcust

dec , and in the experiments, we set δinc = 0.05, δdec = 0.1, δcust
inc = 0.1

and δcust
dec = 0.01. If the LS found, during last call, a solution σ that satisfied

psum
c (σ) < pmin

c and psum
t (σ) < pmin

t , the parameters α and β are decreased by

α :=
(

1 − Pc

max{Pc, Pt}
δdec

)
α, β :=

(
1 − Pt

max{Pc, Pt}
δdec

)
β.

Even if the LS did not find such a solution, if Nc = 0 (resp, Nt = 0) holds, α
(resp., β) is decreased by the same equation. Otherwise they are increased by

α :=
(

1 +
Nc

max{Nc, Nt}
δinc

)
α, β :=

(
1 +

Nt

max{Nc, Nt}
δinc

)
β.

In the locally optimal solution, if a route violates the capacity or time window
constraint, γi of each customer i in the route is increased by γi := (1 + δcust

inc )γi.
For each customer i who is in a feasible route, γi is decreased by γi := (1−δcust

dec )γi.
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6 Path Relinking Approach

Let R be a reference set of solutions. Initially R is prepared by applying the
LS to randomly generated solutions. Then it is updated by reflecting outcome
of the LS. During the search, the algorithm always keeps the size of R to ρ (a
parameter). We set ρ = 10 in the experiments. Good solutions with respect to p
are kept in R, excluding at most two solutions: One which achieves pmin

c and the
other which achieves pmin

t . After a feasible solution is found (i.e., pmin
c = 0 and

pmin
t = 0), the best feasible solution is always stored as a member of R. Other

solutions in R are maintained as follows. Whenever the LS stops, the locally
optimal solution σlopt is exchanged with the worst (with respect to p) solution
σworst in R (excluding the above solutions), provided that σlopt is not worse
than σworst and is different from all solutions in R.

A path relinking operation is applied to two solutions σA (initiating solution)
and σB (guiding solution) randomly chosen from R, where a random perturba-
tion is applied to σB with probability 1/2 before applying the path relinking (for
the purpose of keeping the diversity of the search), and the resulting solution
is redefined to be σB. We use a cyclic operation, which exchanges partial paths
between different routes cyclically, as a random perturbation. Note that a cyclic
operation with more than two routes is different from any neighborhood opera-
tion we use for the LS, and hence the local search does not get the solution back
by one move. In the path relinking operation, we focus on route edges which are
used in vehicle routes of a solution. Let dist(σ, σ′) be the number of different
route edges between two solutions σ and σ′. It is not difficult to see that the
distance dist(σ, σ′) between two different solutions σ and σ′ can be shortened
by at least one by applying an appropriate 2-opt∗ operation or intra-route op-
eration to σ. The path relinking operation generates a sequence of solutions
(σA = σ1, σ2, . . . , σq, . . . , σB) by repeating the following procedure starting
from q = 1 until σq = σB holds: Let σq+1 be the best solution with respect to
p among those that satisfy dist(σq+1, σB) < dist(σq, σB) and obtainable from
σq by a 2-opt∗ or intra-route operation, and then let q := q + 1.

We call a solution σq locally minimal in the sequence if p(σq) < min{p(σq−1),
p(σq+1)} holds. Let S be the best π (a parameter) solutions among the locally
minimal solutions in the sequence. Every solution in S is used as an initial
solution of the LS. We set π = 20 in the experiments. The next path relinking is
initiated whenever all solutions in S are exhausted as the starting solutions for
the local search.

The proposed algorithm is summarized in Algorithm 1. The algorithm stops
when it reaches a given time limit. In Algorithm 1, a call to the local search
starting from a solution σ is denoted by LS(σ), whose output is the obtained
locally optimal solution.

7 Computational Experiments

We conducted computational experiments to evaluate the proposed algorithm.
The algorithm was coded in C and run on a PC (Xeon, 2.8 GHz, 1 GB memory).
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Algorithm 1. Path Relinking Approach
1: Construct the neighbor lists.
2: Let R be ρ randomly generated solutions. For each σ ∈ R, let σlopt := LS(σ) and

then let R := (R \ {σ}) ∪ σlopt.
3: Let S := ∅.
4: while the stopping criterion is not satisfied do
5: while S = ∅ do
6: Randomly choose two solutions σA and σB from R (σA �= σB).
7: With probability 1/2, apply a cyclic operation to σB.
8: Apply the path relinking operation to σA and σB, and then let S be the set

of best π locally minimal solutions in the generated sequence.
9: end while

10: Randomly choose σ ∈ S, and let S := S \ {σ} and σlopt := LS(σ).
11: Update the penalty weights.
12: Choose the worst σworst ∈ R among those that satisfy (1) σworst is not the

unique feasible solution in R, (2) ∃σc ∈ R \ {σworst}, psum
c (σc) ≤ psum

c (σworst)
and (3) ∃σt ∈ R \ {σworst}, psum

t (σt) ≤ psum
t (σworst).

13: if p(σlopt) ≤ p(σworst) and σlopt is different from all solutions in R then
14: R := (R \ {σworst}) ∪ σlopt

15: end if
16: end while
17: Output the incumbent solution and stop.

The parameter setting of the algorithm was determined by preliminary exper-
iments on several instances, in which we observed that the performance of the
algorithm was not sensitive to parameter values.

We used Solomon’s benchmark instances [14] and Gehring and Homberger’s
benchmark instances [15]. There are 356 instances in total, and all of them have
been widely used in the literature. In Solomon’s instances, the number of cus-
tomers is 100, and in Gehring and Homberger’s instances, which are the extended
instances from Solomon’s instances, the number of customers is from 200 to 1000.
The customers are distributed in the plane and the distances between customers
are measured by Euclidean distances. For these instances, the number of vehi-
cles m is also a decision variable, and the objective is to find a solution with the
minimum vehicle number and the total traveling distance in the lexicographical
order (i.e., a solution is better than another (1) if its vehicle number is smaller
or (2) if the vehicle numbers are the same but the distance is smaller).

As our algorithm deals with the problem with a fixed number of vehicles, we
first set the number of vehicles in each instance to the known smallest number
to the best of our knowledge, and repeat the followings. If the algorithm found
a feasible solution and the number of vehicles is larger than a lower bound⌈∑

i∈V ai/u
⌉
, we ran the algorithm again after decrementing the number of

vehicles by one. On the other hand, if the algorithm was not able to find a
feasible solution, we ran the algorithm again after incrementing the number of
vehicles by one. Among the 356 instances, the algorithm found a feasible solution
in the first run for every instance except for six instances. Among the remaining
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Table 1. Comparison of our results with the existing methods for benchmark instances

References 100 200 400 600 800 1000

Hashimoto et al. CNV 405 692 1381 2069 2746 3430
(in press) [12] CTD 57,282 171,223 406,646 847,470 1,444,513 2,204,728

P4 2.8GHz 17 33 67 100 133 167
Ibaraki et al. CNV 407 694 1387 2070 2750 3431
(in press) [11] CTD 57,545 170,484 398,938 825,172 1,421,225 2,155,374

P4 2.8GHz 17 33 67 100 133 167
Bräysy et al. CNV – 695 1391 2084 2776 3465
(2004) [16] CTD – 172,406 399,132 820,372 1,384,306 2,133,376

AMD 700MHz – 3×2 3×8 3×16 3×26 3×40
Prescott-Gagnon et al. CNV 405 694 1385 2071 2745 3432

(2007) [17] CTD 57,240 168,556 389,011 800,797 1,391,344 2,096,823
Opt 2.3GHz 5×30 5×53 5×89 5×105 5×129 5×162

Pisinger and Ropke CNV 405 694 1385 2071 2758 3438
(2007) [18] CTD 57,322 169,042 393,210 807,470 1,358,291 2,110,925

P4 3GHz 10×2 10×8 5×16 5×18 5×23 5×27
Mester and Bräysy CNV – 694 1389 2082 2765 3446

(2005) [19] CTD – 168,573 390,386 796,172 1,361,586 2,078,110
P 2GHz – 8 17 40 145 600

Le Bouthillier et al. CNV 405 694 1389 2086 2761 3442
(2005) [20] CTD 57,360 169,959 396,612 809,494 1,443,400 2,133,645

5×P 850MHz 12 10 20 30 40 50
Le Bouthillier and Crainic CNV 407 694 1390 2088 2766 3451

(2005) [21] CTD 57,412 173,061 408,281 836,261 1,475,281 2,225,366
5×P 850MHz 12 10 20 30 40 50

Gehring and Homberger CNV 406 696 1392 2079 2760 3446
(2001) [22] CTD 57,641 179,328 428,489 890,121 1,535,849 2,290,367

4×P 400MHz 5×14 3×2 3×7 3×13 3×23 3×30
Homberger and Gehring CNV 408 699 1397 2088 2773 3459

(2005) [15] CTD 57,422 180,602 431,089 890,293 1,516,648 2,288,819
P 400MHz 5×17 3×2 3×5 3×10 3×18 3×31

Ours CNV 405 694 1383 2068 2737 3420
CTD 57,484 169,070 392,507 800,982 1,367,971 2,085,125

Xeon 2.8GHz 17 33 67 100 133 167

six instances, it was able to find feasible solutions with one more vehicle for five
instances and with two more vehicles for the one. The time limit for each run of
the algorithm for 100, 200, 400, 600, 800 and 1000-customer instances are 1000,
2000, 4000, 6000, 8000 and 10000 seconds, respectively. This setting of the time
limit is the same with [11, 12].

Table 1 shows the comparison of our results with those obtained by existing
methods. A number in the first row shows the number of customers. Our results
are denoted by “Ours.” For each method, we provide the cumulative number
of vehicles (CNV), the cumulative total distance (CTD), the CPU, and the
average computation time in minutes for solving an instance. In the notation
of the CPU, “P,” “P4,” and “Opt” mean Pentium, Pentium 4 and Opteron,
respectively. Marks “×” in the second column mean the number of CPUs (e.g.,
“4×P 400MHz” means four CPUs of Pentium 400MHz), and those in other
columns mean the number of runs (e.g., “5×30” means five runs each with 30
minutes of computation time). A number in bold in rows CNV indicates that
the value is the best among all the algorithms in the table and there is no tie.
When there are ties for the best CNV, the corresponding distance value that is
the smallest among those ties is indicated by boldface.
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From Table 1, the CNV obtained by our algorithm is much smaller than
those of the other methods for large instances with 600 customers or more, and
the computation time spent by our algorithm seems to be reasonable; e.g., for
instances with n = 1000, the computation times spent by recent algorithms by
Hashimoto et al. [12], Ibaraki et al. [11], Prescott-Gagnon et al. [17], Pisinger
and Ropke [18], and Mester and Bräysy [19] are similar to or sometimes larger
than ours even if the difference of CPUs are taken into consideration. Moreover,
our algorithm updated 41 best known solutions among the 356 instances.1 This
indicates that our algorithm is highly efficient.

8 Conclusion

We proposed a path relinking approach for the vehicle routing problem with
time windows with an adaptive mechanism to control parameters. The generated
solutions in the path relinking are improved by a local search. In the local search,
each neighborhood solution is evaluated in O(1) time and the neighborhood
search is pruned heuristically by the neighbor list. During the search, infeasible
solutions are allowed to be visited while the amount of violation is penalized.
We also proposed an adaptive mechanism to control the penalty weights. The
computational results on representative benchmark instances indicate that the
proposed algorithm is highly efficient, and furthermore, the algorithm updated
41 best known solutions among 356 instances.
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Abstract. The genomic median problem is an optimization problem
inspired by a biological issue: it aims to find the chromosome organization
of the common ancestor to multiple living species. It is formulated as the
search for a genome that minimizes a rearrangement distance measure
among given genomes. Several attempts have been reported for solving
this NP-hard problem. These range from simple heuristic methods to a
stochastic local search algorithm inspired by WalkSAT, a well-known local
search algorithm for the satisfiability problem in propositional logic.

The main objective of this research is to develop improved algorith-
mic techniques for tackling the genomic median problem and to provide
new state-of-the-art solutions. In particular, we have developed an algo-
rithm that is based on tabu search and iterated local search and that
shows high performance. To alleviate the dependence of the algorithm
performance on a single fixed parameter setting, we have included a re-
active scheme that automatically adapts the tabu list length of the tabu
search part and the perturbation strength of the iterated local search
part. In fact, computational results show that we have developed a new
very high-performing stochastic local search algorithm for the genomic
median problem and we also have found a new best solution for a real-
world case.

1 Introduction

Genome rearrangements are large-scale evolutionary events that modify the or-
ganization of the genomes. Chromosomes may be fissioned, fusioned, large seg-
ments can be translocated or inverted. Given the genome of living species, the
reconstruction of rearrangement scenarios has been the subject of a huge amount
of literature these last years. It aims to understand what rearrangement events
took place and when they occurred in evolution, and it is a promising way for
phylogenetic inference [1,2].

The Genomic Median Problem (GMP) is a crucial step in genome rearrange-
ment problems. While for only two genomes, a scenario with a minimum number
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of rearrangements can be reconstructed by the way of polynomial methods for
many variants of rearrangements (see for example [3,4]), the problem is NP-
hard for already three genomes [5]: it consists in searching for a fourth genome
that minimizes the distance to three given genomes, in terms of the number of
rearrangements.

The classical phylogenetics methods to construct an ancestral genome are
based on pieces of sequences, thus making the reconstruction of the organisation
of the genome impossible. One of the objectives of the GMP is to find this
organisation, making better construction of ancestral genomes. It could also be
used as a hint for phylogeny, for example by using the founded median as an
entry-point for a phylogenetic algorithm (like in [2]).

There have been various attempts at algorithmically solving the problem.
Exact solutions exist for the special case where there is only one chromosome and
a rather small instance [5,6]. Incomplete approaches, ranging from rather simple
heuristics [6,7] to more complex local search algorithms [8,9] have been proposed.
These approaches produce solutions that are often of good quality but that are
not necessarily optimal and for larger instances there may be significant gaps to
optimal solutions. In addition, compared to the currently available local search
techniques, the approaches are rather simple and therefore one can conjecture
that there is certainly room for improving their performance.

Motivated by these observations, we propose a new stochastic local search
algorithm for the GMP, based on tabu search [10] and iterated local search [11].
A first goal is to improve upon the performances of current state-of-the-art
algorithms in terms of run-times required to reach specific bounds on solution
quality and to find better quality solutions, thus providing new state-of-the-art
solutions that may be of biological relevance. A second goal is to study the
influence of the parameters on the solution process with respect to different
instances; based on preliminary experiments, we have added a reactive scheme
to automatically adapt crucial parameters, which for our algorithm are the tabu
list length and the perturbation size, during search.

The paper is organized as follows. Section 2 formally describes the GMP and
existing approaches to solve this problem. Section 3 introduces our new stochas-
tic local search approach, based on a combination of tabu search and iterated
local search. Section 4 studies the influence of the parameters on the solution
process, showing that the best parameter setting varies from one instance to
another. Section 5 introduces a reactive scheme for automatically adapting pa-
rameters during search. Section 6 experimentally compares static and reactive
versions of our algorithm, and also compares our algorithm with state-of-the-art
approaches.

2 Problem Definition and Existing Work

A genome will be defined as a graph, in which some edges are directed (the
orthologous markers), and some not (the links between the genes).
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Representation of genomes by graphs. A genome is seen as a group of chromo-
somes. A chromosome is seen as a list of oriented genes or markers. A genome
composed of k chromosomes defined on a set of n markers is represented by a
graph G = (V, E) such that

– V associates two vertices i− and i+ with every marker i ∈ [1; n] and two
anonymous vertices with every chromosome j ∈ [1; k];

– E is composed of two parts Em and Ec such that
• for every marker i, Em contains a directed edge (i−, i+)
• for every chromosome cj containing |cj | markers, Ec contains |cj |+1 non

directed edges
such that each chromosome corresponds to a path in G which endpoints are
anonymous vertices and which alternates directed edges —corresponding to
oriented markers— and non directed edges —linking markers.

Let us consider for example a genome composed of 6 markers and the 3 follow-
ing chromosomes: c1 =<

→
1 ,
←
5>, c2 =<

→
2 ,
→
4>, and c3 =<

→
3 ,
←
6>. This genome is

represented by the following graph.

Note that chromosomes have no directions so that paths are not directed. For
example, the first chromosome c1 is equivalent to <

→
5 ,
←
1>.

Genomic distance. A rearrangement in a genome is an operation that deletes
two non directed edges (a, b) and (c, d), and replace them by (a, c) and (b, d).
It is the “double-cut-and-join” operation described in [4,12], or the “2-break
rearrangement” of [13]. It simulates chromosome fissions, fusions, translocations,
inversions and transpositions.

Let us consider the genome of our previous example. An example of rear-
rangement consists in replacing edges (2+, 4−) and (3+, 6+) by edges (2+, 3+)
and (4−, 6+), thus changing chromosomes c2 to <

→
2 ,
←
3>, and c3 to <

←
4 ,
←
6>, as

displayed in the following graph.

A rearrangement transforms one genome into another. Given two genomes G1
and G2 defined on the same set of markers, there is always a way to transform G1
into G2 by a sequence of rearrangements. The minimum number of rearrange-
ments can be computed in linear time [4,12]. This number is called the genomic
distance between G1 and G2, and is noted d(G1, G2).

The genomic distance d(G1, G2) is computed with respect to a non directed
graph G1,2 = (V1,2, E1,2) which is obtained by merging the two graphs G1 =
(V1, E1) and G2 = (V2, E2) as follows:
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– V1,2 = V1 ∪ V2. Note that vertices associated with markers are shared by
both G1 and G2 as they are defined on a same set of markers. However,
anonymous vertices corresponding to chromosome endpoints are different in
G1 and G2.

– E1,2 is the union of all non directed edges of G1 and G2.

The genomic distance is defined, as in [4,12], by d(G1, G2) = n + p − c(G1,2)) +
#(G1,2)

2 where n is the number of markers, p is the number of chromosomes in
both genomes, c(G1,2) is the number of different paths and cycles in G1,2, and
#(G1,2) the number of paths which endpoints are anonymous vertices that come
from the same genome.

The Genomic Median Problem (GMP). Given three genomes G1, G2, G3 on the
same set of markers, the goal of the GMP is to determine a genome GM that
minimizes the sum d(G1, GM ) + d(G2, GM ) + d(G3, GM ).

The reversal median problem, which uses the number of reversal as a distance,
was proven to be NP-hard [5] for the special case when the genomes are composed
of one unique chromosome. The problem which we handle here uses a different
distance, as defined in [4,12] but most of the time the solution coincide. Also,
the proof of NP-Completeness is valid for our definition of the distance (which
results in a problem called Cycle Median Problem in [5]), since it proves that,
for unichromosomal genomes, the problem of minimizing our distance formula
is NP-Complete.

Various methods for solving the GMP have been proposed. These comprise
exact solvers or simple heuristics that work on the particular case of the uni-
chromosomal genomes like GRAPPA [5,6] with some heuristic improvements [7].
For the general problem case with multiple chromosomes, there is a rather sim-
plistic search method in MGR-MEDIAN [8], which uses a greedy constructive algo-
rithm. The best performance results so far have been reported for an algorithm
called MedRByLS [9]; this is a local search algorithm inspired by WalkSAT [14], a
well-known local search algorithm for the satisfiability problem in propositional
logic. We based our algorithm on the same neighborhood and the same data
structures as used in MedRByLS.

Neighborhood considered in MedRByLS. To find a genome GM that minimizes
the sum of the distances to three given genomes G1, G2 and G3, MedRByLS iter-
ately modifies a genome GM by performing local moves. Each move corresponds
to a rearrangement in GM , i.e., the exchange of two non directed edges of GM ,
and is evaluated with respect to the three graphs GM,1, GM,2, and GM,3.

At each step, the size of the neighborhood is in O(n2), where n is the number
of markers. As genomes may have several hundreds of markers, the neighbor-
hood is reduced in [9] with respect to the following principle: a rearrangement is
considered only if, in one of the three graphs GM,1, GM,2, and GM,3, it breaks
a cycle or a path into two cycles or paths such that one of these two cycles or
paths is elementary, i.e., a cycle of length 2 or a path of length 3. Therefore,
moves can only increase the number of elementary cycles or paths.
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Basic principle of the local search algorithm of MedRByLS. MedRByLS follows
the random walk framework initially introduced in WalkSAT for the SAT problem
[14]. It starts local search from an initial genome G which may either be provided
by the user or randomly chosen within the set {G1, G2, G3}. Then, it iteratively
chooses a move uniformly at random from the neighborhood defined above; the
move is applied if it decreases the sum of the distances; otherwise it is accepted
with a small probability p.

3 Tabu Search and Iterated Local Search for the GMP

The random walk framework considered by MedRByLS is a rather basic one which
may have difficulties in escaping from local minima. Hence, we propose to con-
sider more advanced local search approaches.

We have first re-implemented MedRByLS, using the same data structures based
on graphs and the same neighborhood definition. This allows a direct comparison
of our new algorithm to the original MedRByLS using a same implementation of
the data structures. For this comparison, we verified that our re-implementation
matches the performances of the original version.

As a next step, we enhanced the local search by a simple tabu search scheme.
For the search diversification of the resulting tabu search algorithm, we inte-
grated it into the iterated local search framework by adding appropriate per-
turbations and acceptance criteria. This resulted in an algorithm that we called
MedITaS (for Median solver by Iterated Tabu Search). More precisely, it consists
of the two following main algorithmic components.

3.1 Tabu Search (TS) Algorithm

At first, a simple tabu search (TS) algorithm was implemented. This algorithm
forbids the reversal of the last t local search moves (where t is the tabu tenure),
that is, the last changed nodes. In order to do this, we use an array of n integers
representing the n nodes and, for each node, we put in this array the iteration
when it was last changed. This simplifies the task of guessing if a move is tabu or
not (that is, if it has been changed in the last cycles). Different from many other
simple tabu search algorithms, ours is based on a first-improvement pivoting
rule because the neighbourhood is very large and, thus, a full scan of it would
be too time-consuming. In our experiments we have used a default initial tabu
list length of 50.

3.2 Iterated Local Search (ILS) Algorithm

After some preliminary tests, TS seemed to stagnate frequently in poor qual-
ity solutions. To overcome this problem, we integrated TS into an iterated lo-
cal search (ILS) algorithm. ILS uses solution perturbations when the search is
deemed to be stuck in plateau-moves or in a basin of attraction to generate new
starting solutions for the local search. To know if the search is stuck, we con-
sider the resampling ratio [15], which is computed in constant time thanks to
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a double hash-table, and which corresponds to the percentage of solutions that
are revisited with respect to the number of computed solutions. If this ratio is
too high, it means that the search keeps visiting the same few solutions and has
to be perturbated to escape the basin of attraction. We also look at the solution
value. If this value keeps being constant for a long time, we consider being stuck
in plateau-moves. In this case a perturbation could lead to avoid looking for
non-interesting solutions.

The perturbation uses a rearrangement of k edges instead of 2. This means
that k edges are deleted and replaced by k other edges sharing the same extrem-
ities. Finally, an acceptance criterion decides whether either the solution before
the perturbation or the one after is kept for the next iteration of the ILS algo-
rithm; in the latter case, the tabu list is emptied. The implemented acceptance
criterion accepts a new solution if it is better than the previous one; otherwise,
the previous solution has a user-defined probability of beeing kept (in our test,
we used the default probability of 0.2).

4 Tuning of MedITaS Parameters

In order to test the influence of parameters on the solution process, we conducted
a simple experiment. At first, we randomly generated 20 instances equally split
on two different levels of hardness (with respect to the definition of the phase
transition by [9]) but with the same size (500 markers). The first set of 10
instances, labeled as easy, has a ratio of number of markers to number of rear-
rangements of 0.5. The second set of 10 instances, labeled as hard, has a value
of 1.0 for the same ratio. Each of these sets has been used to off-line tune the
algorithm through F-Race [16,17], a tool for the automatic tuning of algorithm
parameters.

For the tabu tenure of TS, the best setting resulting from these experiments
was of 76 for easy instances whereas it was of 86 for hard instances. For the
strength k of the perturbation of ILS, the best setting was of 17 for easy instances
whereas it was of 2 for hard instances. Hence, the best settings strongly differ
between the two benchmark sets, especially for the perturbation.

5 Reactive Search

Experiments reported in the previous section show that both ILS and TS are
sensitive to parameter settings and that the best parameter settings are very
different from one instance class to another. In addition, in further experiments
we have noted that within one instance class, the best parameter settings depend
further on the individual instance. Hence, we decided to extend the basic version
of MedITaS using a reactive version of TS (which adaptatively changes the tabu
tenure) and ILS (working on the perturbation strength). This reactive scheme is
inspired from reactive search [18]. It uses the resampling ratio, which is explained
in Section 3.2, to determine if one of the parameters needs to be changed.
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The reaction mechanism works as follows. If there is too much resampling
(by default, after 3 recalculated solutions), the tabu list length is increased (by
default, the size is increased by 10). At the opposite, if there is no resampling
for a long time (the default value is 500 moves) the tabu list length is shorten by
a parameterized number (by default, the tabu list is shortened by 1). A similar
mechanism is used for tuning the ILS part. If the solution that is returned
after the perturbation and the subsequent local search is an already visited
solution, the reactive algorithm increases the strength k of the perturbation,
because it seems that the perturbation did not succeed in escaping from the
basin of attraction. Here again, the size of the increase and the decrease can be
parameterized; as default, we use the value 1. Finally, we should remark that
the settings of the parameters that direct the reaction mechanism, at least in
principle, should also be tuned. However, here we essentially stick to the default
values used, since, as also argued in [18], the parameters steering the reaction
mechanism should be reasonably robust.

6 Results

In order to test the efficiency of our algorithms, we ran multiple comparisons. All
runs were made on the same machine having a Dual-Core AMD Opteron2216
HE (2 processors at 2.4GHz) and 4GB of RAM; only one core is used for each
execution since our algorithm is implemented as a fully sequential one.

6.1 Comparison between Off-Line Tuned and Reactive Algorithms

At first, we generated randomly 20 instances with a ratio of number of markers to
number of rearrangements of 1.0 (which seems, according to the results from [9],
to be in the phase transition) of 500 markers. This set has been split in two: 10
instances have been used to off-line tune the algorithm through F-Race [16,17],
as before; 10 other instances have been used as a test set. The algorithm to
tune is the non-reactive version of MedITaS. We have then compared the results
of the off-line tuned version to the reactive version of our MedITaS algorithm
starting either with the default initial parameter values or with the parameter
values that have been determined by the automatic tuning. For the comparison,
we have run those three algorithms for 20 independent trials on each of the 10
test instances and 60 seconds per trial.

Figure 1 plots the cumulative distribution of the frequency of finding a bound
on the median to be reached on the 10 test instances. The plot shows that,
when comparing the fine-tuned version to the pure reactive version with initial
default parameter values, the former gets its first high-quality solutions quicker
than the latter. However, after 40 seconds or so, the reactive version reaches
higher empirical frequencies. Also, better trade-offs are obtained by initializing
the reactive algorithm with the fine-tuned parameter settings: doing so gives
good results as quickly as the non-reactive version, and, for higher computation
times, it performs similar to the default reactive algorithm.
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Fig. 1. Comparison between off-line tuned and reactive algorithms

after 15 seconds after 30 seconds after 60 seconds
NR tuned R default NR tuned R default NR tuned R default

R default 0 / 10 - 6 / 10 - 9 / 10 -

R tuned 8 / 10 0 / 10 8 / 10 3 / 10 9 / 10 8 / 10

Fig. 2. Number of significant differences among the ten instances (the number indicates
the number x of times over 10 instances, that is x / 10) as resulting by applying pairwise
comparisons using the Wilcoxon rank sum test. NR and R respectively stand for Non
Reactive and Reactive variants of MedITas; R either starts from fine-tuned or default
parameter settings whereas NR always uses fine-tuned parameter settings.

To check for the statistical significance of the results, we did pairwise com-
parisons using the Wilcoxon rank sum test where the p-values were adjusted
using the holm method on each of the 10 instances separately for correcting for
the effect of multiple comparisons. We then counted how often the differences
between two algorithms are significant (where the p-value is larger than 0.1). We
run those comparison at 15, 30 and 60 seconds run-time.

From Figure 2, we can clearly see that the fine-tuned reactive search performs
quite always significantly better than the non-reactive version. We can also see
that for a short run-time, neither of the reactive version initialized with default
value or the fine-tuned non-reactive one is significantly better than the other.

6.2 Comparison to MedRByLS

In another experiment, we compared the performance of our reactive MedITaS
algorithm (starting with default parameters) to MedRByLS, which from a solution
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Instance MedITas MedRByLS Instance MedITas MedRByLS
avg min max (sdv) avg min max (sdv) avg min max (sdv) avg min max (sdv)

1 541.0 539 543 (1.0) 543.0 538 568 (6.9) 2 540.4 539 542 (1.0) 542.7 539 569 (6.9)

3 563.7 561 566 (1.5) 565.8 561 590 (6.9) 4 566.9 565 568 (0.8) 570.2 566 600 (8.6)

5 588.9 587 591 (1.3) 593.3 587 624 (8.7) 6 593.9 591 597 (1.7) 597.6 592 631 (9.4)

7 609.8 609 613 (1.1) 613.9 608 642 (8.2) 8 610.2 608 612 (1.1) 614.4 608 648 (9.3)

9 635.1 634 637 (1.0) 639.1 634 674 (9.7) 10 637.1 635 639 (1.2) 641.2 635 676 (10.1)

11 658.5 656 661 (1.4) 662.8 656 697 (10.1) 12 653.4 651 655 (1.1) 658.8 652 692 (9.6)

13 669.1 668 672 (1.0) 674.7 668 710 (10.6) 14 669.3 667 671 (1.2) 674.1 667 709 (10.7)

15 675.2 674 677 (1.0) 679.8 673 716 (10.7) 16 684.5 682 688 (1.6) 690.8 683 724 (10.7)

17 693.1 691 695 (1.1) 698.9 692 737 (11.5) 18 692.5 690 695 (1.4) 698.8 691 735 (11.2)

19 707.2 706 709 (0.9) 713.0 705 753 (11.6) 20 705.7 703 709 (1.4) 712.1 703 751 (11.6)

21 722.3 720 725 (1.1) 728.6 720 770 (12.6) 22 716.2 714 718 (1.0) 722.9 715 764 (12.4)

.

Fig. 3. Comparison between MedITaS and MedRByLS on randomly generated instances

Fig. 4. Comparison between MedITaS and MedRByLS on a real-world instance (the
human-mouse-rat comparison)

quality point of view is currently the state-of-the-art algorithm [9]. For this
comparison, we used 22 randomly generated instances of different difficulties
(with respect to the definition of the phase transition by [9]) but with the same
size (500 markers). The set has 11 levels of hardness and 2 instances per level. On
this set we run our MedITaS algorithm and our implementation of the basic local
search algorithm MedRByLS from [9] for 20 independent trials on each instance
and 40 seconds per trial. The comparison of the best solution qualities reached
by both algorithms on each instance is given in Figure 3. From this figure, we
can see that MedITaS always gives solution qualities that are at least as good
as MedRByLS (often the differences are also statistically significant) and that the
gap between the two algorithms tends to increase as instances become harder.
Also, the standard deviation of MedITaS is very low and remain constant as the
instances become harder, as opposite to MedRByLSwhich give an higher deviation
on harder instances.
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6.3 Real World Instance

In another experiment we used a real-world instance: the human-mouse-rat com-
parison, which was also used in [9]. This instance is made of 424 markers and
the best median so far had a value of 346. We ran each algorithm 35 times for a
computation time limit of 60 seconds. From these runs, we generated the graph
in Figure 4, which represents the histogram of the frequency of finding certain
solution qualities with the two main algorithms (MedITaS, in its reactive and
fine-tuned version, and MedRByLS).

Figure 4 shows that MedITaS finds solutions that are at least as good as those
found by MedRByLS and always of a very good quality (of 347 or better), while
MedRByLS sometimes fails to find good ones: on some runs it returned a solution
of value 351. We should also notice that MedRByLS has a quite low probability
(less than 20%) of finding a solution of 347 or better. Finally, it should be also
mentioned that in our experiments MedITaS found a new best solution for this
instance with an evaluation function value of 345.

7 Discussion

Our implementation of Iterated Tabu Search gave very promising results. First,
we have seen that the reactive version of our algorithm can handle relatively
well a wide range of different instances without having the need to be off-line
tuned. But we have also shown that a reactive search starting with fine-tuned
parameters performs slightly better and a lot quicker than starting from a default
value.

Then, we have seen that MedITaS always gives at least as good or better re-
sults, in the same computation time, than the former best algorithm (MedRByLS).
We also found a new best solution for the human-mouse-rat common ancestor.

The developped algorithmic techniques perform significantly better than pre-
viously available ones from a solution quality point of view. But from a biological
point of view, the distance used here (as the one used in all previous attempts
at solving the problem) does not seem to reflect the biological reality of the evo-
lution process, as it is also explained in [19]). Thus, a research on a biologically
more relevant distance has to be envisaged. Also, we noted in our experiments
that there were a lot of medians with the exactly same value. It could be a
good idea to do some comparison between them trying to extract some valuable
information on the most probable characteristics of the real ancestor.
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Abstract. The graph coloring problem (GCP) is a widely studied com-
binatorial optimization problem with numerous applications, including
time tabling, frequency assignment, and register allocation. The growing
need for more efficient algorithms has led to the development of sev-
eral GCP solvers. In this paper, we introduce the first GCP solver that
is based on Learning Automata (LA). We enhance traditional Random
Walk with LA-based learning capability, encoding the GCP as a Boolean
satisfiability problem (SAT). Extensive experiments demonstrate that
the LA significantly improve the performance of RW, thus laying the
foundation for novel LA-based solutions to the GCP.

Keywords: SAT, Learning automata, Combinatorial optimization,
Graph coloring problem.

1 Introduction

In the family of graph coloring problems (GCP), an undirected graph G(V, E)
is given, where V is a set of vertices, and E is a set of vertice-pairs called
edges. With k colors {1...k} to assign, a k-coloring of G refers to a mapping
C : V → {1...k} such that if C(p) = C(q) then (p, q) �∈ E. That is, vertices
that are directly connected by an edge cannot be assigned the same color. There
exist two variants of this problem. In the optimization variant, the goal is to find
the chromatic number χ(G) which is the minimum k for which there exists a
k-coloring of G. In the decision variant, the task is to decide whether a coloring
of G exists for a particular number of colors k. All these problems are known
to be NP-complete, so it is unlikely that a polynomial-time algorithm exists
that solves any of these problems. In this paper, we present the first (as far as
we know) heuristic technique that combines Learning Automate (LA) [1] with
Random Walk (RW) [2], with the purpose of solving the decision variant of the
GCP.

The GCP is a well studied problem and has several applications including fre-
quency assignment [3], register allocation [4], pattern matching [5], timetabling
[6], and the solution of sparse linear systems [7]. Encoding the GCP as Boolean
satisfiability (SAT) and solving it using efficient SAT algorithms has caused con-
siderable interest. The SAT problem, which also is known to be NP-complete [8],
can be defined as follows. A propositional formula Φ =

∧m
j=1 Cj with m clauses

J. van Hemert and C. Cotta (Eds.): EvoCOP 2008, LNCS 4972, pp. 277–288, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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and n Boolean variables is given. Each Boolean variable xi, i ∈ {1, . . . , n}, takes
one of the two values, True or False. Each clause Cj is a disjunction of Boolean
variables and has the form:

Cj =

⎛
⎝ ∨

k∈Ij

xk

⎞
⎠ ∨

⎛
⎝ ∨

l∈Īj

x̄l

⎞
⎠ ,

where Ij , Īj ⊆ {1, .....n}, I ∩ Īj = ∅, and x̄i denotes the negation of xi.
The task is to determine whether there exists an assignment of truth values to

the variables under which Φ evaluates to True. Such an assignment, if it exists,
is called a satisfying assignment for Φ, and Φ is called satisfiable. Otherwise, Φ
is said to be unsatisfiable. Note that since we have two choices for each of the n
Boolean variables, the size of the search space S becomes |S| = 2n. That is, the
size of the search space grows exponentially with the number of variables.

Most SAT solvers use a Conjunctive Normal Form (CNF) representation of
the formula Φ. In CNF, the formula is represented as a conjunction of clauses,
each clause is a disjunction of literals, and a literal is a Boolean variable or its
negation. For example, P ∨ Q is a clause containing the two literals P and Q.
The clause P ∨Q is satisfied if either P is True or Q is True. When each clause
in Φ contains exactly k literals, the resulting SAT problem is called k-SAT.

This paper proposes a new heuristic solution to the GCP, encoded as SAT. In
essence, the traditional Random Walk (RW) strategy is enhanced with learning
capability, in the form of Learning Automata. Learning Automata have been
used to model biological systems [9], and have attracted considerable interest in
the last decade because they can learn the optimal actions when operating in (or
interacting with) unknown stochastic environments. Furthermore, they combine
rapid and accurate convergence with low computational complexity.

Our paper is organized as follows. In Sect. 2 we review various algorithms for
solving SAT-encoded graph coloring problems. Sect. 3 explains the basic con-
cepts of Learning Automata and introduces our new approach — the Learning
Automata Random Walk (LARW). In Sect. 4, we analyse the results from test-
ing LARW on an extensive set of GCP instances. Finally, in Sect. 5 we present
a summary of the paper and provide pointers to further work.

2 Previous Work and Recent Developments

The GCP has been extensively studied due to its simplicity and applicability. The
simplicity of the problem coupled with its intractability makes it an ideal plat-
form for exploring new algorithmic techniques. This has led to the development
of several algorithms for solving graph coloring problems which usually fall into
two main categories: exact systematic search (SS) algorithms and stochastic lo-
cal search algorithms (SLS). Exact systematic search algorithms are guaranteed
to return a solution to a problem if one exists and prove it insoluble otherwise.
Exact algorithms include specialized branch-and-bound algorithms [10]. Also,
techniques based on integer programming formulations of the GCP have been
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studied [11]. The most popular and efficient systematic search algorithms for
SAT are based on the Davis-Putnam (DP) [12] procedure which enumerates all
possible variable assignments by means of a binary search tree.

These algorithms can be very effective on specific classes of graphs, however,
when problems scales up, their solution effectiveness typically degrades in an
exponential manner. Indeed, due to their combinatorial explosive nature, large
and complex SAT problems are hard to solve using systematic search algorithms.
One way to overcome the combinatorial explosion is to give up completeness.

Local search algorithms are based on what is perhaps the oldest optimization
method – trial and error. Typically, they start with an initial assignment of
truth values to variables, randomly or heuristically generated. Satisfiability can
then be formulated as an iterative optimization problem in which the goal is
to minimize the number of unsatisfied clauses. Thus, the optimum is obtained
when the value of the objective function equals zero, which means that all clauses
are satisfied. During each iteration, a new value assignment is selected from the
”neighborhood” of the present one, by performing a ”move”. Most local search
algorithms use a 1-flip neighborhood relation, which means that two truth value
assignments are considered to be neighbors if they differ in the truth value of only
one variable. Performing a move, then, consists of switching the present value
assignment with one of the neighboring value assignments, e.g., if the neighboring
one is better (as measured by the objective function). The search terminates if
no better neighboring assignment can be found. Note that choosing a fruitful
neighborhood, and a method for searching it, is usually guided by intuition –
theoretical results that can be used as guidance are sparse. Popular local search
algorithms include GSAT [13], GSAT with random walk [2], Walk-SAT [14].
Recently, new algorithms, such as [15], have emerged using history-based variable
selection strategies in order to avoid flipping the same variable.

3 Learning Automata for SAT-Encoded GCPs

We base our work on the principles of Learning Automata (LA) [1]. LA have been
used to model biological systems [9], and have attracted considerable interest in
the last decade because they can learn the optimal actions when operating in (or
interacting with) unknown stochastic environments. Furthermore, they combine
rapid and accurate convergence with low computational complexity. Although
the GCP has not been addressed from a LA point of view before, LA solutions
have recently been proposed for several other combinatorial optimization prob-
lems. In [16,17] a so-called Object Migration Automaton is used for solving the
classical equipartitioning problem. An order of magnitude faster convergence is
reported compared to the best known algorithms at that time. A similar ap-
proach has also been discovered for the Graph Partitioning Problem [18]. LA
has furthermore been used to tackle Stochastic Knapsack Problems [19]. Finally,
the list organization problem has successfully been addressed by LA schemes and
have been found to converge to the optimal arrangement with probability arbi-
trary close to unity [20]. Inspired by the success of the above solution schemes, we
will in the following propose a LA based solution scheme for SAT-encoded GCPs.
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3.1 A Learning SAT Automaton

Generally stated, a LA performs a sequence of actions on an environment. The
environment can be seen as a generic unknown medium that responds to each
action with some sort of reward or penalty, perhaps stochastically. Based on
the responses from the environment, the aim of the LA is to find the action
that minimizes the expected number of penalties received.Because we treat the
environment as unknown, we will here only consider the definition of our LA.

Our LA can be defined in terms of a quintuple [1]:

{Φ, α, β, F(·, ·), G(·, ·)}.

Above, Φ = {φ1, φ2, . . . , φs} is the set of internal automaton states. α = {α1,
α2, . . . , αr} is the set of automaton actions. And, β = {β1, β2, . . . , βm} is the
set of inputs that can be given to the automaton. An output function αt =
G[φt] determines the next action performed by the automaton given the current
automaton state. Finally, a transition function φt+1 = F [φt, βt] determines the
new automaton state from: (1) the current automaton state and (2) the response
of the environment to the action performed by the automaton.

Based on the above generic framework, the crucial issue is to design automata
that can learn the optimal action when interacting with the environment. Several
designs have been proposed in the literature, and the reader is referred to [1]
for an extensive treatment. In this paper we target the SAT-encoded GCP, and
our goal is to design a team of LA that seeks the solution of GCP instances.
We build upon the work of Tsetlin and the linear two-action automaton [9, 1].
Briefly stated, for each literal in the SAT-encoded GCP instance that is to be
solved, we construct an automaton with

– States: Φ = {−N − 1, −N, . . . , −1, 0, . . . , N − 2, N − 1}.
– Actions: α = {True,False}.
– Inputs: β = {reward , penalty}.

Fig. 1 specifies the G and F matrices of our automaton (cf. general definition of
LA above). The G matrix can be summarized as follows. If the automaton state
is positive, then action True will be chosen by the automaton. If, on the other
hand, the state is negative, then action False will be chosen. Note that since

TrueFalse

−N −(N−1) −1 0 N−1N−2......

Reward
Penalty

Fig. 1. The state transitions and actions of our Learning Automaton for SAT-encoded
GCP
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we initially do not know which action is optimal, we set the initial state of our
automaton randomly to either ’-1’ or ’0’.

The state transition matrix F determines how learning proceeds. As seen in
the figure, providing a reward input to the automaton strengthens the currently
chosen action, essentially by making it less likely that the other action will be
chosen in the future. Correspondingly, a penalty input weakens the currently
selected action by making it more likely that the other action will be chosen
later on. In other words, the automaton attempts to incorporate past responses
when deciding on a sequence of actions.

3.2 Learning Automata Random Walk (LARW)

Overview: In addition to the definition of the LA, we must define the environ-
ment that the LA interacts with. Simply put, the environment is a SAT-encoded
GCP instance as defined in Sect. 1. Each variable of the SAT problem instance
is assigned a dedicated LA, resulting in a team of LA. The task of each LA
is to determine the truth value of its corresponding variable, with the aim of
satisfying all of the clauses where that variable appears. In other words, if each
automaton reaches its own goal, then the overall SAT problem at hand has also
been solved.

Pseudo-code: With the above perspective in mind, we will now present the
details of the LARW that we propose. Fig. 2 contains the complete pseudo-code
for solving SAT-encoded GCP, using a team of LA. As seen from the figure, the
LARW corresponds to an ordinary Random Walk (RW), however, both satisfied
and unsatisfied clauses are used in the search. Furthermore, the assignment of
truth values to variables is indirect, governed by the states of the LA. At the
core of the LARW is a punishment/rewarding scheme that guides the team of
LA towards the optimal assignment. In the spirit of automata based learning,
this scheme is incremental, and learning is performed gradually, in small steps.
To elaborate, in each iteration of the algorithm, we randomly select a single
clause. A variable is randomly selected from that clause, and the corresponding
automaton is identified. If the clause is unsatisfied, the automaton is punished.
Correspondingly, if the clause is satisfied, the automaton is rewarded, however,
only if the automaton makes the clause satisfied.

Remark 1: Like a two-action Tsetlin Automaton, our proposed LA seeks to
minimize the expected number of penalties it receives. In other words, it seeks
finding the truth assignment that minimizes the number of unsatisfied clauses
among the clauses where its variable appears.

Remark 2: Note that because multiple variables, and thereby multiple LA,
may be involved in each clause, we are dealing with a game of LA [1]. That
is, multiple LA interact with the same environment, and the response of the
environment depends on the actions of several LA. In fact, because there may
be conflicting goals among the LA involved in the LARW, the resulting game
is competitive. The convergence properties of general competitive games of LA
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Procedure learning automata random walk()

Begin
/* Initialization */
For i := 1 To n Do

/* The initial state of each automaton is set to either ’-1’ or ’1’ */
state[i] = random element({−1, 0});
/* And the respective literals are assigned corresponding truth values */
If state[i] == -1 Then xi = False Else xi = True ;

/* Main loop */
While Not stop(C) Do

/* Draw unsatisfied clause randomly */
Cj = random unsatisfied clause(C);
/* Draw clause literal randomly */
i = random element(Ij ∪ Īj);
/* The corresponding automaton is penalized for choosing the “wrong” action */
If i ∈ Ij And state[i] < N − 1 Then

state[i]++;
/* Flip literal when automaton changes its action */
If state[i] == 0 Then

flip(xi);
Else If i ∈ Īj And state[i] > −N Then

state[i]−−;
/* Flip literal when automaton changes its action */
If state[i] == -1 Then

flip(xi);

/* Draw satisfied clause randomly */
Cj = random satisfied clause(C);
/* Draw clause literal randomly */
i = random element(Ij ∪ Īj);
/* Reward corresponding automaton if it */
/* contributes to the satisfaction of the clause */
If i ∈ Ij And state[i] ≥ 0 And state[i] < N − 1 Then

state[i]++;
Else If i ∈ Īj And state[i] < 0 And state[i] > −N Then

state[i]−−;
EndWhile

End

Fig. 2. Learning Automata Random Walk Algorithm

have not yet been successfully analyzed, however, results exists for certain classes
of games, such as the Prisoner’s Dilemma game [1]. In our case, the LA involved
in the LARW are non-absorbing, i.e., every state can be reached from every other
state with positive probability. This means that the probability of reaching the
solution of the SAT problem instance at hand is equal to 1 when running the
game infinitively. Also note that the solution of the SAT problem corresponds
to a Nash equilibrium of the game.

Remark 3: In order to maximize speed of learning, we initialize each LA ran-
domly to either the state ’-1’ or ’0’. In this initial configuration, the variables
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will be flipped relatively quickly because only a single state transition is neces-
sary for a flip. Accordingly, the joint state space of the LA is quickly explored
in this configuration. However, as learning proceeds and the LA move towards
their boundary states, i.e., states ’-N’ and ’N-1’, the flipping of variables calms
down. Accordingly, the search for a solution to the SAT problem instance at
hand becomes increasingly focused.

4 Experimental Results

4.1 Benchmark Instances

As a basis for the empirical evaluation of LA, we selected a benchmark test
suite of 3-colorables graphs that shows phase transition. All the instances are
known to be hard and difficult to solve and are available from the SATLIB web-
site (http://www.informatik.tu-darmstadt.de/AI/SATLIB). All the benchmark
instances used in this experiment are satisfiable instances and have been used
widely in the literature.

Note that due to the randomization of LARW, the number of flips required for
solving a problem instance varies widely between different runs. Therefore, for
each problem instance, we run LARW and RW 100 times with a cutoff parameter
(maxflips) which is high enough (107) to guarantee a success rate close to 100%.

4.2 Search Trajectory

The manner in which each LA converges to an assignment is crucial for better
understanding the LA SAT Game’s behavior. In Fig. 3, we show how the best and
current assignment progresses during the search using a random 3-SAT problem
with 150 variables and 645 clauses taken from the SAT benchmark library. The
plot located on the left of the figure suggests that problem solving with LARW
happens in two phases. In the first phase, which corresponds to the early part of
the search (the first 5% of the search), LARW behaves as a hill-climbing method.
In this phase, which can be described as a short one, up to 95% of the clauses
are satisfied. The best assignment climbs rapidly at first, and then flattens off
as we mount the plateau, marking the start of the second phase. The plateau
spans a region in the search space where flips typically leave the best assignment
unchanged. The long plateaus becomes even more pronounced as the number of
flips increases. More specifically, the plateau appears when trying to satisfy the
last few remaining clauses.

To further investigate the behavior of LARW once on the plateau, we looked
at the corresponding average state of the LA as the search progresses. The plot
located on the right in Fig. 3 shows the resulting observations. At the start of
plateau, search coincides in general with an increase in the average state. The
longer the plateau runs, the higher the average state becomes. An automaton
with high average state needs to perform a series of actions before its current
state changes to either −1 or 0, thereby making the flipping of the corresponding
variable possible. The transition between each plateau corresponds to a change
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Fig. 3. (Left )LARW’s search space on a 150 variable problem with 645 clauses (uf150-
645). Along the horizontal axis we give the number of flips, and along the vertical axis
the number of satisfied clauses. (Right) Average state of automaton. Horizontal axis
gives the number of flips, and the vertical axis shows the average state of automaton.

to the region where a small number of flips gradually improves the score of the
current solution ending with an improvement of the best assignment. The search
pattern brings out an interesting difference between LARW and the standard use
of SLS. In the latter, one generally stops the search as soon as no more improve-
ments are found. This can be appropriate when looking for a near-solution. On
the other hand, when searching for a global maximum (i.e., a satisfying assign-
ment) stopping when no flips do no yield an immediate improvement is a poor
strategy.

4.3 Run-Length-Distributions (RLDs)

As an indicator of the behavior of the algorithm on a single instance, we choose
the median cost when trying to solve a given instance in 100 trials, and using an
extremely high cutoff parameter setting of Maxsteps = 107 in order to obtain a
maximal number of successful tries. The reason behind choosing the median cost
rather than the mean cost is due to the large variation in the number of flips
required to find a solution. To get an idea of the variability of the search cost,
we analyzed the cumulative distribution of the number of search flips needed
by both LARW and RW for solving single instances. Due to non-deterministic
decisions involved in the algorithm (i.e.,initial assignment, random moves), the
number of flips needed by both algorithms to find a solution is a random variable
that varies from run to run. More formally, let k denotes the total number of
runs, and let f ′(j) denotes the number of flips for the j-th successful run (i.e, run
during which a solution is found ) in a list of all successful runs, sorted according
to increasing number of flips, then the cumulative empirical RLD is defined by
P̂ (f ′(j) ≤ f) = |{j|f ′(j)≤f}

k . For practical reasons we restrict our presentation
here to the instances corresponding to small, medium, and large sizes from the
underlying test-set.
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Fig. 4 and Fig. 5 shows RLDs obtained by applying RW and LARW to in-
dividual SAT-encoded graph coloring problem instances. As can be seen from
Fig. 4, we observe that on the small size instance, the two algorithms show no
cross-over in their corresponding RLDs. This provides evidence for the superi-
ority of LARW compared to RW (i.e, N = 1 ) as it gives consistently higher
success probabilities, regardless of the number of search steps. On the medium
size instance, we observe a stagnation behavior with a low asymptotic solution
probability corresponding to a value around 0.3. As can be easily seen, both
methods show the existence of an initial phase below which the probability for
finding a solution is 0. Both methods start the search from a randomly chosen
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assignment which typically violates many clauses. Consequently, both methods
need some time to reach the first local optimum which possibly could be a feasi-
ble solution. The plot in Fig. 5 shows that the performance of RW for the large
instance (flat375-1403) is even far more dramatic as the probability of finding a
feasible solution within the required number of steps is 0. The value of the dis-
tance between the minimum and the maximum number of search steps needed
for finding a feasible solution using RW is higher compared to that of LARW and
increases with the hardness of the instance. The learning automaton mechanism
pays off as the instance gets harder, and the probability of success gets higher
as N increases and reaches an optimal value.

4.4 Mean Search Cost

In this section, we focus on the behavior of the two algorithms using 100 instances
from a test-set of small, medium instances. We chose not to include the plot for
the large instance (flat375-1403) because RW was incapable of solving it during
the 100 trials. For each instance the median search cost (number of local search
steps) is measured and we analyze the distribution of the mean search cost
over the instances from each test-set. The different plots show the cumulative
hardness distributions produced by 100 trials on 100 instances from a test-set.
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Fig. 6. Hardness distribution across test-set flat150-545. (Left) Hardness distribution
across test-set for flat90-300. Along the horizontal axis we give the median number of
flips per solution , and along the vertical axis the fraction of problems solved.

Several observations can be made from the plots in Fig. 6 which shows the
hardness distributions of the two algorithms for SAT-encoding graph coloring
problem instances. There exists no cross-overs in the plots of both figures which
makes LARW the clear winner. The RW shows a higher variability in search cost
compared to LARW between the instances of each test-set. The distributions
of the two algorithms confirms the existence of instances which are harder to
solve than others. In particular, as can be seen from the long tails of these
distributions, a substantial part of problem instances are dramatically harder
to solve with RW than with LARW. The harder the instance, the higher the
difference between the average search costs of two algorithms (a factor of approx.
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up to 50). The finite automaton learning mechanism employed in LARW offers
an efficient way to escape from highly attractive areas in the search space of
hard instances leading to a higher probability success as well as reducing the
average number of local search steps to find a solution. The empirical hardness
distribution of SAT-encoded graph coloring problems in Fig. 6 shows that it was
rather easy for both algorithms to find a feasible solution in each trial across the
test set flat90-300 with LARW showing on average a lower search cost within
a given probability compared to RW. The plot reveals the existence of some
instances on which RW suffers from a strong search stagnation behavior. The
plot located on the left of Fig. 6 shows a striking poor average performance of
RW compared to LARW on the test set flat150-545. Conversely, LARW shows
a consistent ability to find solutions across the instances on this test set. For
LARW, we observe a small variability in search cost indicated by the distance
between the minimum and the maximum number of local search steps needed to
find a solution. The differences in performance between these two algorithms can
be characterized by a factor of ca. 10 in the median. The performance differences
observed between the two algorithms for small size instances are still observed
and very significant for medium size instances. This suggests that the finite
learning automaton is considerably more effective for larger instances.

5 Conclusions

In this work, we have introduced a new approach for solving GCP based on
combining Learning Automata with Random Walk. Thus, in order to get a com-
prehensive picture of the new algorithm’s performance, we used a set of prob-
lems consisting of randomly generated SAT-encoded graph coloring instances.
All the selected problem instances are located in the so-called phase transition
and have been widely used by different authors in the context of evaluating the
performance of metaheuristics. RW suffers from stagnation behaviour which di-
rectly affects its performance. This same phenomenon is, however, observed with
LARW only for large instances. Based on the analysis of RLD’s, we observe that
the probability of finding a solution within any arbitrary number of search steps
is higher for LARW compared to that of RW. To get an idea of the variability
of the solution cost between the instances of the test sets, we analysed the cu-
mulative distribution of the mean search cost. Results indicated that the harder
the instance, the higher the difference between the mean search costs of the two
algorithms. The difference can be several order of magnitude in favour of LARW.
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